Answer:
t = 2.2 s
Explanation:
Given that,
A person observes a firework display for A safe distance of 0.750 km.
d = 750 m
The speed of sound in air, v = 340 m/s
We need to find the between the person see and hear a firework explosion. let it is t. So, using the formula of speed.

So, the required time is 2.2 seconds.
Answer:
6.38 x 10^4 J
Explanation:
d = 0.33 cm = 0.33 x 10^-2 m, Area = 87 x 36 cm^2 = 0.87 x 0.36 m^2
ΔT = 14 degree C, t = 1 min = 60 second
K = 0.8 W / m K
Heat = K A ΔT t / d
H = 0.8 x 0.87 x 0.36 x 14 x 60 / (0.33 x 10^-2)
H = 6.38 x 10^4 J
Speed is the rate of change <span>of distance.</span>
Answer:
The value of F= - 830 N
Since the force is negative, it implies direction of the force applied was due south.
Explanation:
Given data:
Mass = 1000-kg
Distance, d = 240 m
Initial velocity, v1 = 20.0 m/s
Final velocity, v2 = 0 (since the car came to rest after brake was applied)
v2²= v1² + 2ad (using one of the equation of motion)
0= 20² + (2 x a x 240)
0= 400 + 480 a
a = - 400/480
a = - 0.83 m/s²
Then, imputing the value of a into
F = ma
F = 1000 kg x ( - 0.83 m/s²)
F= - 830 N
The car was driving toward the north, and since the force is negative, it implies direction of the force applied was due south.