Answer:
D) The ball exerts a force on the wall and the wall exerts a force back.
Explanation:
Newton's third law of motion states that:
"When an object A exerts a force on another object B, then object B exerts an equal and opposite force on object A"
In this problem, we can identify (for instance) object A with tha ball and object B with the wall. Therefore, if we apply Newton's third law, we get:
The ball (object A) exerts a force on the wall (object B), therefore the wall (object B) exerts an equal and opposite force on the ball (object A). So, option D is the correct one.
Newton's 2nd law says: Force = (mass) x (acceleration) .
I wrote Force and acceleration in bold letters because
they're both vectors ... they have size and direction.
The equation is saying that the Force and the acceleration
are both in the same direction.
Answer: Option (D) is the correct answer.
Explanation:
The given elements Li, C and F are all second period elements. So, when we move from left to right across a period then there occurs increase in number of valence electrons as there occurs increase in total number of electrons.
So, it means more electrons are added to the same energy level.
Thus, we can conclude that a property of valence electrons for each element is located in the same energy level is common in the given elements.
Because you know that gravity is in m/s^2 so, period will be measured in seconds. You know the cable is 12m long and gravity is 9.81 solve for T (period) 2π12sqrt(9.81)=6.94922
Answer:
43.68 J
Explanation:
Distance moved= 7.8 m
Force = 5.6 N
Work Done= Distance moved * Force
= 7.8 *5.6
=43.68 Joules