Here is the full question:
Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.
What is the concentration at 10 minutes? (Round your answer to three decimal places.
Answer:
0.046 %
Explanation:
The rate-in;

= 0.8
The rate-out
= 
= 
We can say that:

where;
A(0)= 0.2% × 6000
A(0)= 0.002 × 6000
A(0)= 12

Integration of the above linear equation =

so we have:



∴ 
Since A(0) = 12
Then;



Hence;



∴ the concentration at 10 minutes is ;
=
%
= 0.0456667 %
= 0.046% to three decimal places
Answer:
The answer to your question is below
Explanation:
Covalent bonds are bonds between to atoms that share a pair of electrons, there are three kinds of covalent bonds but I'll describe only two:
Covalent non polar bond: is a covalent bond between two elements of the same element. Ex two hydrogens, two chlorine, two oxygenes, etc.
Covalent polar bond: is a covalent bond between 2 elements of different elements, for example: hydrogen and chlorine or nitrogen, they are polar because on of the element that form it is smaller than the other one, then a partial positive and a partial negative charge is formed.
Reaction Rate is the rate at which a substance undergoes a chemical change.
Answer:
v = 534.5mL
m = 597.15g
Density = 9.23g/mL
Density = 9.125g/mL
Explanation:
Density = mass/ volume
For the first question
Density = 1.59g/mL
Mass = 834.01g
Volume = ?
Using the above formula we have 1.59 = 834.01/v
v = 834.01/1.59
v = 534.5mL
For the second question
Density =0.9167g/mL
Volume = 651.41mL
Mass =?
Using the above formula we have
0.9167 =m/651.41
Cross multiply
m = 0.9167 x 651.41
m = 597.15g
For the third question
Mass =803.44g
Volume=87.03mL
Density =?
Density = 803.44/87.03
= 9.23g/mL
For the fourth
Density = 56.85/6.23
= 9.125g/mL