The solution would be like
this for this specific problem:
<span>(78.6 kJ) / (92.0 g /
(46.0684 g C2H5OH/mol)) = 39.4 kJ/mol </span>
<span>39.3 </span>
So the approximate molar
heat of vaporization of ethanol in kJ/mol is 39.3.
I hope this answers your question.
Use a proportion ...
<span>100.0g - 38.67g - 13.86g = 47.47g Oxygen </span>
<span>285.0 mg = 0.285g </span>
<span>47.47/100 = x/0.285g </span>
<span>x = ( 47.47/100) X 0.285g </span>
Answer:
The 5 chemical changes are. 1) Tarnish, 2) Rust, 3) Dissolve, 4) Burn, 5) Bake.
Answer:
³⁸₂₀Ca.
Explanation:
³⁸₁₉K –> __ + ⁰₋₁β
Let ʸₓA represent the unknown.
Thus the equation above can be written as:
³⁸₁₉K –> ʸₓA + ⁰₋₁β
Thus, we can obtain the value of y an x as follow:
38 = y + 0
y = 38
19 = x + (–1)
19 = x – 1
Collect like terms
19 + 1 = x
x = 20
Thus,
ʸₓA => ³⁸₂₀A => ³⁸₂₀Ca
Therefore, the equation is:
³⁸₁₉K –> ³⁸₂₀Ca + ⁰₋₁β