1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
2 years ago
5

Assume that the body's muscle mechanism can be approximated by a spring with a uniform continuous mass distribution that follows

Hooke's law. Concerning this,
A) find the effective mass of the spring with mass m.
Then, estimate the potential energy which can be mechanically stored in B) the muscles of each arm, and
C) the muscles of each leg,
and estimate the spring constant of
D) each arm muscles, and
E) each leg muscle.
F) Now, could estimate the speed of a runner by using these results?
Physics
1 answer:
tatiyna2 years ago
5 0

Based on Hooke's law, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.

<h3>What is the spring constant?</h3>

The spring constant or stiffness constant of an elastic spring is constant which describes the extent a bit forceapplied to an elastic spring will extend it.

  • Spring constant, K = force/extension

Assuming, a body's muscle mechanism is a spring obeying Hooke's law, the effective mass of the spring with mass m is 1/3 of the mass of the spring = m/3

The potential energy that can be stored = ke^2 / 2

where K is spring constant and e is the extension produced.

Therefore, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.

Learn more about Hooke's law at: brainly.com/question/12253978

You might be interested in
How many times should the power develop by the engine of a ship increases to double is velocity i the resistance of the water to
Setler79 [48]

Answer:

If the ship speed is doubled, then the power developed is 8 times the initial value.

Explanation:

ship power is roughly proportional to the cube of the speed, so

P ∝ v³

If the speed is doubled, then the power developed becomes

P  ∝ (2)³ = 8 times

Therefore, if the ship speed is doubled, then the power developed is 8 times the initial value.

4 0
3 years ago
A lemon with mass 0.3 kg falls out of a tree from a height of 1.8 m. How much mechanical energy does the lemon have just before
Zina [86]
Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. It can either be kinetics or potential. In this problem you know it starting position so you can calculate it's potential energy (PE):

<span>PE=mass∗gravity∗height=0.3kg∗9.8m/s2∗1.8m=?

</span>The answer will typically be given in joules:

1J=kg∗m2s2 Could be wrong...  But I believe it is 5.3...? as a final product.
3 0
3 years ago
Read 2 more answers
A car with a mass of 1380 Kg is traveling at 23 m/s to the north. A truck with a mass of 1625 Kg is traveling at 26 m/s to the s
trasher [3.6K]

Answer: -3.49 m/s (to the south)

Explanation:

This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum p_{i} must be equal to the final momentum p_{f}, and taking into account this is aninelastic collision:

Before the collision:

p_{i}=mV_{o}+MU_{o} (1)

After the collision:

p_{f}=(m+M)V_{f} (2)

Where:

m=1380 kg is the mass of the car

V_{o}=23 m/s is the velocity of the car, directed to the north

M=1625 kg is the mass of the truck

U_{o}=-26 m/s is the velocity of the truck, directed to the south

V_{f} is the final velocity of both the car and the truck

p_{i}=p_{f} (3)

mV_{o}+MU_{o}=(m+M)V_{f} (4)

Isolating V_{f}:

V_{f}=\frac{mV_{o}+MU_{o}}{m+M} (5)

V_{f}=\frac{(1380 kg)(23 m/s)+(1625 kg)(-26 m/s)}{1380 kg+1625 kg} (6)

Finally:

V_{f}=-3.49 m/s The negative sign indicates the direction of the velocity is to the south

8 0
3 years ago
How will the solubility of a gas solute change if the pressure above the solution is reduced?
Hoochie [10]
If the pressure above a solution containing a gas solute is reduced, the limit of the gas's solubility will decrease.
6 0
3 years ago
Read 2 more answers
• 2. A 70 kg man on a 100 kg boat throws a ball. The boat moves backwards 5 meters in 10 seconds. What is
Kipish [7]

Answer:

0.5 m/sec

Explanation:

v=S÷t

 =5÷10

v=0.5 m/sec

6 0
3 years ago
Other questions:
  • a student pushes a 40 in Block across the floor for a distance of 10 meters how much work was done to move the block A) 4j. B) 4
    5·1 answer
  • A parallel-plate capacitor has an area of 4.59 cm2, and the plates are separated by 1.28 mm with air between them. it stores a c
    5·1 answer
  • If 3.5 paper clips = 1.0 pencils and your paper is 1.5 pencils long, how many paper clips long is your paper?
    12·1 answer
  • A Cessna 172 aircraft must reach a speed of 35 m/s for takeoff. How long of a runway is needed if the acceleration of the aircra
    11·1 answer
  • Which of the following is a true statement about magnetic fields
    5·1 answer
  • Your average speed on the first half of a car trip is 69.0 km/h. How fast do you have to drive on the second half of the trip to
    11·1 answer
  • What is denser a iron sheet or iron powder??
    8·1 answer
  • This is responsible for making macaroni rise and fall in a pot on the stove.
    12·1 answer
  • Which objects would be considered to be in free fall?
    12·2 answers
  • Which force is responsible for determining the shapes of galaxies?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!