Answer:
5.09 m/s
Explanation:
Use the height to find the time it takes to land:
y = y₀ + v₀ᵧ t + ½ gt²
0 = 8.0 m + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 1.28 s
Now use the horizontal distance to find the initial velocity.
x = x₀ + v₀ₓ t + ½ at²
6.5 m = 0 m + v₀ (1.28 s) + ½ (0 m/s²) (1.28 s)²
v₀ = 5.09 m/s
Answer:
An unbalanced force (net force) acting on an object changes its speed and/or direction of motion. ... A net force = unbalanced force. If however, the forces are balanced (in equilibrium) and there is no net force, the object will not accelerate and the velocity will remain constant.
Explanation:
You may jump higher because the more the mass of the planet, the more gravitational force. There is less mass(and gravity) on Callisto so you wouldn’t be weighed down as much and can jump higher. Whereas on Jupiter there is more weight holding you down.
Answer:
32s
Explanation:
We must establish that by the time the police car catches up to the speeder, both have travelled a certain distance during the same amount of time. However, the police car experiences accelerated motion whereas the speeder travels at a constant velocity. Therefore we will establish two formulas for distance starting with the speeder's distance:

and the police car distance:

Since they both travel the same distance x, we can equal both formulas and solve for t:

Two solutions exist to the equation; the first one being 
The second solution will be:

This result allows us to confirm that the police car will take 32s to catch up to the speeder
Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.