<span>vibration of particles decreases as the temperature decreases It also decreases during phase change but temperature does not</span>
13.6
a) yes Pb is more reactive that Ag, Pb before Ag
b) no, Cu after H
c) yes, Cl2 is more active than I2
4) yes, Mg is more active
13.7 (as I think)
Al ³⁺ more active than Zn²⁺, Mn can react with Zn²⁺, but not with Al ³⁺ , because Mn after Al but before Zn
Answer:
Ka = 6.02x10⁻⁶
Explanation:
The equilibrium that takes place is:
We <u>calculate [H⁺] from the pH</u>:
- [H⁺] =

Keep in mind that [H⁺]=[A⁻].
As for [HA], we know the acid is 0.66% dissociated, in other words:
We <u>calculate [HA]</u>:
Finally we <u>calculate the Ka</u>:
- Ka =
= 6.02x10⁻⁶
Answer:
483 nm corresponds to blue light hence the complex will appear orange.
Explanation:
Using the formula;
E= hc/λ
Where;
E = energy of the photon
h = Plank's constant (6.6*10^-34Js)
c = Speed of light (3*10^8 ms-1)
λ = wavelength
λ = hc/E
λ = 6.6*10^-34 * 3*10^8/4.10×10^−19
λ = 4.83 * 10^-7 or 483 nm
483 nm corresponds to blue light
Using the colour wheel approach, if a complex absorbs blue light, then it will appear orange.