Answer:
the reason why Mars is red is because of its regolith, or surface material, contains lots of iron oxide — the same compound that gives blood and rust their hue
Answer:
The only PH range which is not covered by any of the given components of the universal indicator is 7.6-8.0
Hence the PH range 7.6-8 can't be described using universal indicator.
Answer:
Reliability. When a scientist repeats an experiment with a different group of people or a different batch of the same chemicals and gets very similar results then those results are said to be reliable. Reliability is measured by a percentage – if you get exactly the same results every time then they are 100% reliable.
Explanation:
Sorry, I only got one way.
Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g
Answer: The statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
Explanation:
A strong acid upon dissociation gives a weak conjugate base. This can also be said as stronger is the acid, weaker will be its conjugate base or vice-versa.
Hydrofluoric acid is a strong base as it dissociates completely when dissolved in water.
For example, 
The conjugate base is
which is a weak base.
Acetic acid is a weak acid as it dissociates partially when dissolved in water. So, the conjugate base of acetic acid is a strong base.

Thus, we can conclude that the statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.