Answer:
4 th image
Explanation:
water is being boiled n the 4th image indicating that the change between liquids and gasses is water vapor.
Answer: The maximum wavelength of light for which a carbon-chlorine Single bond could be broken by absorbing a single photon is 354 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:
where,
E = energy of the light =
(1kJ=1000J)
N= avogadro's number
h = Planck's constant
c = speed of light
= wavelength of light

Thus the maximum wavelength is 354 nm
Answer:
1.45 x 10⁻² g CO₂
Explanation:
To find the mass of carbon dioxide, you need to (1) convert grams CH₄ to moles CH₄ (via molar mass), then (2) convert moles CH₄ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams CO₂ (via molar mass). The final answer should have 3 sig figs to reflect the given value (5.30 x 10⁻³ g).
Molar Mass (CH₄): 12.011 g/mol + 4(1.008 g/mol)
Molar Mass (CH₄): 16.043 g/mol
Combustion of Methane:
1 CH₄ + 2 O₂ ---> 2 H₂O + 1 CO₂
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
5.30 x 10⁻³ g CH₄ 1 mole 1 mole CO₂ 44.007 g
--------------------------- x ---------------- x --------------------- x ----------------- =
16.043 g 1 mole CH₄ 1 mole
= 0.0145 g CO₂
= 1.45 x 10⁻² g CO₂
Answer: The wavelength of the x-ray wave is 
Explanation:
To calculate the wavelength of light, we use the equation:

where,
= wavelength of the light = ?
c = speed of x-ray= 
= frequency of x-ray =

Putting in the values:

Thus the wavelength of the x-ray wave is 