Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction:
2 Al + 3 Cl2 --> 2 AlCl3
Whereas there is a 2:3 mole ratio of aluminum to chlorine; it will be possible for us to calculate the required grams of aluminum by using the equality 22.4 L = 1 mol, the aforementioned mole ratio and the atomic mass of aluminum (27.0 g/mol) to obtain:

Regards!
Answer:
Carbon dioxide levels in the Earth's atmosphere have been steadily increasing.
Carbon has a longer average lifetime in the atmosphere.
Explanation:
Today the level of carbon dioxide is higher than at any time in human history. Scientists widely agree that Earth’s average surface temperature has already increased by about 2 F (1 C) since the 1880s, and that human-caused increases in carbon dioxide and other heat-trapping gases are extremely likely to be responsible.
The lifetime in the air of CO2, the most significant man-made greenhouse gas, is probably the most difficult to determine, because there are several processes that remove carbon dioxide from the atmosphere. Between 65% and 80% of CO2 released into the air dissolves into the ocean over a period of 20–200 years.
Answer:
i want to say nuclues but again i also think that it is electron shells
Answer:
33.33% = 33%
Explanation:
MgCO3(s) + 2HCl (aq) --> MgCl2(aq) + H20(l) + CO2(g)
1 mole of MCO3 will produce → 1 mole of CO2
We need to get the number of mole of CO2:
and when we have 0.22 g of CO2, so number of mole = mass / molar mass
Moles = 0.22 g / 44 g/mol = 0.005 mole
Moles of Mg = moles of CO2 = 0.005 mole
Mass of Mg = moles * molar mass
= 0.005 * 84 /mol = 0.42 g
Percent of MgCO3 by mass of Mg = 0.42 g / 1.26 * 100
=33.33 %
Answer:
Final temperature = 149 K
Explanation:
Given data:
Initial temperature = 25°C (25+273 = 298 K)
Initial volume = 4.5 L
Final temperature = ?
Final volume = 9.0 L
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 4.5 L × 298 K / 9.0 L
T₂ = 1341 L K / 9.0L
T₂ = 149 K