I believe the answer would be Kinetic Energy. Kinetic energy is defined as energy which a body possesses by virtue of being in motion. We weren’t given answer choices so I don’t have much to work with lol.
Complete Question
The spaceship Intergalactica lands on the surface of the uninhabited Pink Planet, which orbits a rather average star in the distant Garbanzo Galaxy. A scouting party sets out to explore. The party's leader–a physicist, naturally–immediately makes a determination of the acceleration due to gravity on the Pink Planet's surface by means of a simple pendulum of length 1.08m. She sets the pendulum swinging, and her collaborators carefully count 101 complete cycles of oscillation during 2.00×102 s. What is the result? acceleration due to gravity:acceleration due to gravity: m/s2
Answer:
The acceleration due to gravity is
Explanation:
From the question we are told that
The length of the simple pendulum is 
The number of cycles is 
The time take is
Generally the period of this oscillation is mathematically evaluated as

substituting values


The period of this oscillation is mathematically represented as

making g the subject of the formula we have
![g = \frac{L}{[\frac{T}{2 \pi } ]^2 }](https://tex.z-dn.net/?f=g%20%3D%20%5Cfrac%7BL%7D%7B%5B%5Cfrac%7BT%7D%7B2%20%5Cpi%20%7D%20%5D%5E2%20%7D)

Substituting values

Answer:
Explanation:
Net force would be the one causing the acceleration or
F = ma = 0.126(3.0) = 0.378 N
The answer is B) They do NOT require a medium to travel.
<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.