1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
4 years ago
9

What is the volume of the right rectangular prism?

Mathematics
2 answers:
dexar [7]4 years ago
6 0
He volume of the right rectangular prism is 120
Bad White [126]4 years ago
5 0
The volume of the right rectangular prism is 120in3
You might be interested in
The cost c in $ of producing x items is in the equation c=x/7+1 which of the following choices will find the cost c if x is 35
riadik2000 [5.3K]

Answer:

care of it and I will get back to you with a new one for me and support you in whatever way

Step-by-step explanation:

try to get the morning and then we can go from there to the meeting tonight but I can tomorrow

3 0
3 years ago
A city currently has 31,000 residents and is adding new residents steadily at the rate of 1200 per year. If the proportion of re
dlinn [17]

Answer:

Population of the city after 7 years from now, P(7) = 6370

Given:

Initial Population, P_{i} = 31000

rate, r(t) = 1200 /yr

S(t) = [/tex]\frac{1}{1 + t}[/tex]

Step-by-step explanation:

Let the initial population be  P_{i} = 31000

The population after T years is given by the equation:

P(T) = P_{i}S(T) + \int_{0}^{T}S(T - t)r(t) dt          (1)

Thus, the population after 7 years from now is given by using eqn (1):

P(7) = \frac{3100}{1 + 7} + 1200\int_{0}^{7}\frac{1}{8 - t} dt

P(7) = 3875 - 1200ln(8 - t)|_{0}^{7}

P(7) = 3875 - 1200ln(8 - t)|_{0}^{7}

P(7) = 3875 - 1200(ln(1) - ln(8))

P(7) = 3875 + 2495 = 6370

6 0
3 years ago
A right triangle has one leg that is 17 centimeters shorter then the other. If the hypotenuse is 25 what is the length of the tw
Korvikt [17]
Let x represent the shorter leg. Then the Pythagorean theorem tells us
  x^2 +(x +17)^2 = 25^2
  2x^2 +34x +289 = 625
  x^2 +17x -168 = 0
  (x -7)(x +24) = 0 . . . . . the zero product rule tells you x=7 is the solution

The shorter leg is 7 cm; the longer one is 24 cm.
7 0
4 years ago
What is the x-intercept of the equation y = 2/3x + 12? Please explain each step for better understanding, thank you:)
VARVARA [1.3K]

Answer:

(-18, 0)

Step-by-step explanation:

The x intercept has a y value of 0. So, to find the x intercept, plug in 0 as y into the equation, and solve for x:

y = 2/3x + 12

0 = 2/3x + 12

-12 = 2/3x

-18 = x

So, the x intercept is (-18, 0)

8 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Other questions:
  • Through: (-1,-5), slope=3
    11·1 answer
  • The sum of two numbers is 118. if four times the smallest numbers is subtracted from the largest number the result is 18. Find t
    14·1 answer
  • How to make 4.5 into a fraction
    9·2 answers
  • I will give you 50 point please help and get. it right
    13·1 answer
  • COMBINING LIKE TERMS! I need help!
    6·1 answer
  • What are the solutions to the equation?
    10·2 answers
  • What is cardiorespiratory endurance?
    14·2 answers
  • What's 2x+3(4x-3)=8-3x show your work pls
    9·2 answers
  • Set A
    7·1 answer
  • Which series of transformations will ALWAYS form an image that is congruent to its pre-image? Select all that apply.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!