We need first to use the formula F=m(a+g), m iis the total mass, a is the acceleration, g is gravity pulling the blocks. So the procedure will be
<span>m=2kg(both blocks)+500g(both ropes) → m=2.5kg </span>
<span>a=3.00m/s^2 </span>
<span>g=9.8m/s^2 </span>
<span>F=m(a+g) → F=2.5kg (3.00m/s^2 + 9.8m/s^2) → F=2.5kg (12.8m/s^2) → F=32 N
To calculate the tension at the top of rope 1 you need to use the formula </span>T=m(a+g) so it will be <span>T=m(a+g) → T=1.5kg(12.8m/s^2) → T=19.2N
</span>We can now calculate the tension at the bottom of rope 1 using the formula: <span>T=m(a+g) → T=1.25kg(12.8m/s^2) → T=16N
</span>Now to find the tension at the top of rope 2 we do it like this:
<span>T=m(a+g) → T=.25kg(12.8m/s^2) → T=3.2</span>
Moment=Force*distance from the pivot.
Moment 1=500N*2m=1000Nm
Moment 2=1000N*1m=1000Nm
Moment 1=Moment 2
Answer:
Luster: Metals are shiny when cut, scratched, or polished.
Malleability: Metals are strong but malleable, which means that they can be easily bent or shaped. ...
Conductivity: Metals are excellent conductors of electricity and heat.
Answer:
B) protons and neutrons.
Explanation:
The protons and neutrons are located in the nucleus of the atom and represent most of the 'mass' of the atom, that's their count that determine the 'mass' of an atom (like 12 for Carbon).
The electrons rotate around the nucleus and have a negligible mass.
Answer:
Explanation:
I believe what you're looking for is :
Opposites
Density
Could be wrong but I think so.