Answer:
ms⁻¹
Explanation:
Consider the motion of the bullet-block combination after collision
= mass of the bullet = 0.0382 kg
= mass of wooden block = 3.78 kg
= velocity of the bullet-block combination after collision
= spring constant of the spring = 833 N m⁻¹
= Amplitude of oscillation = 0.190 m
Using conservation of energy
Kinetic energy of bullet-block combination after collision = Spring potential energy gained due to compression of spring


ms⁻¹
= initial velocity of the bullet before striking the block
Using conservation of momentum for the collision between bullet and block


ms⁻¹
Answer:
a. True
Explanation:
Illumination distance is the distance, up to which the light of the vehicle can reach. Hence, it is a maximum distance from the, that driver can see.
Stopping distance is the minimum distance required by the car to stop after brakes are applied.
So, in order to avoid any accident the illumination distance must be greater than the stopping distance. So, the driver can stop the vehicle in time, when he sees something in front of it.
Since, the stopping distance in this case is two or three times longer than illumination distance. Therefore, low beam light does not provide enough visibility in high speed driving situations.
Hence, the correct option is:
<u>a. True</u>
<u></u>
While refrigerant 410a is a near azeotropic refrigerant, it is still best when charging to remove the r-410a as a liquid from the storage cylinder.
Azeotrope means a constant boiling mixture. it is a mixture of two or more liquids,by simple distillation whose proportions cannot be changed. A mixture behaving purely is azeotropic and the mixture which behave differently is called non-azeotropic.
Answer:
El neumático soportará una presión de 1.7 atm.
Explanation:
Podemos encontrar la presión final del neumático usando la ecuación del gas ideal:

En donde:
P: es la presión
V: es el volumen
n: es el número de moles del gas
R: es la constante de gases ideales
T: es la temperatura
Cuando el neumático soporta la presión inicial tenemos:
P₁ = 1.5 atm
T₁ = 300 K
(1)
La presión cuando T = 67 °C es:
(2)
Dado que V₁ = V₂ (el volumen del neumático no cambia), al introducir la ecuación (1) en la ecuación (2) podemos encontrar la presión final:
Por lo tanto, si en el transcurso de un viaje las ruedas alcanzan una temperatura de 67 ºC, el neumático soportará una presión de 1.7 atm.
Espero que te sea de utilidad!
Answer:
low risk for tissue damage
uses radio waves
the last three are not correct
:)