The F2 molecular orbital diagram shows 4e- are in the highest energy antibonding (destabilizing) molecular orbitals resulting in a bond order = 1.
Single bonds are easier to break and therefore more reactive. So the answer is yes.
The OH peaks in the IR spectra of benzyl alcohol and benzoic acid should be compared and contrasted.
<h3>What is the IR spectra of Benzoic acid?</h3>
- The right-hand portion of the infrared spectrum of benzoic acid, between wavenumbers 1500 and 400 cm-1, is referred to as the fingerprint region.
- It results from a special combination of intricately overlapping vibrations of the atoms within the benzoic acid molecule.
<h3>What is the IR spectra of Benzyl alcohol?</h3>
- A C-Cl bond is frequently shown by a peak at 700.
- There are a few more peaks at 1500 that are directed at a C=C bond.
<h3>What is IR spectra?</h3>
The percent transmittance (or absorbance) of the radiation through the molecule against the radiation's wave number forms the IR spectrum.
Learn more about IR spectra here:
brainly.com/question/22033021
#SPJ4
Answer:
The reaction is exothermic (option 4)
Explanation:
P4 + 5O2 → P4O10 + 712 kcal
In chemical reactions heat can be absorbed or released:
⇒in the first case, when heat is absorbed, this is called an endothermic reaction. The products have more energy than the reactants. The reaction requires or absorbs energy from it's surroundings. That means that in this reaction energy , in the form of heat, will be absorbed by the reactants.
⇒ when heat is released, this is called an exothermic reaction. The reactants have more energy than the products. The reaction gives or releases energy to it's surroundings. That means that in this reaction energy , in the form of heat, will be released by the reactants.
in the case of P4 + 5O2 → P4O10 + 712 kcal
We notice that on the right side, which is the product side, there is a positive amount of energy. This means that the energy is released by the the reactants, in this reaction. <u>The reaction is exothermic.</u>
.
Answer:
5400 cans
Explanation:
First we convert the total weight, 1 ton, to grams:

Now we need to know the mass of aluminum:

Now we make the relation between the mass of aluminum in 1 ton of the earth's crust and the mass of aluminum per can:
