Answer:
24 atm is the total pressure exerted by the gases
Explanation:
We propose this situation:
In a vessel, we have 4 gases (for example, hydrogen, Xe, methane and chlorine)
Each of the gases has the same pressure:
6 atm → hydrogen
6 atm → xenon
6 atm → methane
6 atm → chlorine
To determine the total pressure, we sum all of them:
Partial pressure H₂ + Partial pressure Xe + Partial pressure CH₄ + Partial pressure Cl₂ = Total P
6 atm + 6 atm + 6 atm + 6 atm = 24atm
Answer:
Energy
Explanation:
C6H12O6 is glucose and the primary function of glucose is to provide energy.
Answer:
sorry don't know the answer but i really need the points sorry
Explanation:
Given:
M = 0.0150 mol/L HF solution
T = 26°C = 299.15 K
π = 0.449 atm
Required:
percent ionization
Solution:
First, we get the van't Hoff factor using this equation:
π = i MRT
0.449 atm = i (0.0150 mol/L) (0.08206 L atm / mol K) (299.15 K)
i = 1.219367
Next, calculate the concentration of the ions and the acid.
We let x = [H+] = [F-]
[HF] = 0.0150 - x
Adding all the concentration and equating to iM
x +x + 0.0150 - x = <span>1.219367 (0.0150)
x = 3.2905 x 10^-3
percent dissociation = (x/M) (100) = (3.2905 x 10-3/0.0150) (100) = 21.94%
Also,
percent dissociation = (i -1) (100) = (</span><span>1.219367 * 1) (100) = 21.94%</span>