<span>1) y = -f(x) (This is the reflection about the x-axis of the graph y = f(x).) That is for every point (x, y) there is a point (x, -y).
</span><span>2) y = |f(x)| means that the entire graph will be above the x-axis. Why? (The absolute value is always positive, that's why!!)<span> To graph the absolute value graph, graph the function y = f(x). Anything above the x-axis, stays above it, anything below the x-axis is reflected above the x-axis and anything on the x-axis, stays on the x-axis.
</span></span><span>3) y = f(-x) (This is reflection about the y-axis of the graph y = f(x)) For every point on the right of the y-axis, there is a point equidistant to the left of the y-axis. That is for every point (x, y), there is a point (-x, y).
</span><span>4) Reflections about the line y = x is accomplished by interchanging the x and the y-values. Thus for y = f(x) the reflection about the line y = x is accomplished by x = f(y). Thus the reflection about the line y = x for y = x2 is the equation x = y2. </span>
The answer to the problem is as follows:
<span>The orthocenter is where the altitudes of a triangle are concurrent (where they intersect each other). On your graph, that would be (-1,0)
I hope my answer has come to your help. God bless and have a nice day ahead!</span>
Order the numbers from least to greatest.
3.4, 31/5, 35.8%, 3.64, 322%
Answer:
p=54 hope this helps
Step-by-step explanation:
Answer: The answers is alternate interior angles.
Step-by-step explanation: First of all, the questions marks given in the figure are renamed in the attached figure as (a), (b), (c) and (d).
For (a): Since AC is parallel to A'C' and A'D is a transversal for these two parallel lines, so, ∠CDB' = ∠B'A'C', because these are alternate interior angles.
For (b): Since BC is parallel to B'C' and A'B' is a transversal, so ∠BEB' = ∠A'B'C', because these are alternate interior angles.
For (c): Since AB is parallel to A'B' and AD is a transversal, so ∠BAC = ∠CDB', because these are alternate interior angles.
For (d): Since AB is parallel to A'B' and BE is a transversal, so ∠ABC = ∠BEB', because these are alternate interior angles.
Thus, all the questions marks are the reasons that the given angles are equal because they are alternate interior angles.