Answer:
4
Explanation:
Carbon configuration- 2,4
Valence electrons means the outershell electrons
That means valence electrons=4
Answer:
for the given reaction is -99.4 J/K
Explanation:
Balanced reaction: 
![\Delta S^{0}=[1mol\times S^{0}(NH_{3})_{g}]-[\frac{1}{2}mol\times S^{0}(N_{2})_{g}]-[\frac{3}{2}mol\times S^{0}(H_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20S%5E%7B0%7D%28NH_%7B3%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28N_%7B2%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28H_%7B2%7D%29_%7Bg%7D%5D)
where
represents standard entropy.
Plug in all the standard entropy values from available literature in the above equation:
![\Delta S^{0}=[1mol\times 192.45\frac{J}{mol.K}]-[\frac{1}{2}mol\times 191.61\frac{J}{mol.K}]-[\frac{3}{2}mol\times 130.684\frac{J}{mol.K}]=-99.4J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20192.45%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20191.61%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20130.684%5Cfrac%7BJ%7D%7Bmol.K%7D%5D%3D-99.4J%2FK)
So,
for the given reaction is -99.4 J/K
1)
average velocity:
(3,9)
(6,36)
average velocity=(36-9)m/(6-3) s=27m/3s=9 m/s
Answer: 9 m/s, east.
2)
(12, 144)
(15,225)
average velocity=(225-144)m/(15-12)s=81 m/3s=27 m/s
Answer: 27 m/s,east.
Answer:
Option B
Transfers energy to the water
Explanation:
Warm air transfers energy to the water when it flows over cold currents. This means that the warm air loses heat energy to the cold currents thus, raising its temperature.
Whenever there is a temperature difference between two bodies in contact with each other, the Fouriers law explains that there is always a transfer of heat from the hotter body to the colder body until they become the same temperature.
Thus, following this, heat will flow from the warm air to the cold currents.
12 moles of oxygen gas are needed to react with 24 moles of carbon monoxide.
<u>Explanation:</u>
The molar ratio of carbon monoxide to oxygen 2:1
Which means 2 moles of carbon monoxide is reacting with 1 mole of oxygen.
to produce 2 moles of carbon dioxide.
Therefore, from the molar ratio, we get that 12 moles of oxygen are required to react with 24 moles 0f carbon monoxide.
Molar ratio:
The molar ratio gives the moles of product that are formed from a certain amount of reactant, and also the number of moles of a reactant needed to react with another reactant.