1) Calculate the number of moles of O2 (g) in 300 cm^3 of gas at 298 k and 1 atm
Ideal gas equation: pV = nRT => n = pV / RT
R = 0.0821 atm*liter/K*mol
V = 300 cm^3 = 0.300 liter
T = 298 K
p = 1 atm
=> n = 1 atm * 0.300 liter / [ (0.0821 atm*liter /K*mol) * 298K] = 0.01226 mol
2) The reaction of a metal with O2(g) to form an ionic compound (with O2- ions) is of the type
X (+) + O2 (g) ---> X2O or
2 X(2+) + O2(g) ----> X2O2 = 2XO or
4X(3+) + 3O2(g) ---> 2X2O3
In the first case, 1 mol of metal react with 1 mol of O2(g); in the second case, 2 moles of metal react with 1 mol of O2(g); in the third, 4 moles of X react with 3 moles of O2(g)
So, lets probe those 3 cases.
3) Case 1: 1 mol of metal X / 1 mol O2(g) = x moles / 0.01226 mol
=> x = 0.01226 moles of metal X
Now you can calculate the atomic mass of the hypotethical metal:
1.15 grams / 0.01226 mol = 93.8 g / mol
That does not correspond to any of the metal with valence 1+
So, now probe the case 2.
4) Case 2:
2moles X metal / 1 mol O2(g) = x / 0.01226 mol
=> x = 2 * 0.01226 = 0.02452 mol
And the atomic mass of the metal is: 1.15 g / 0.02452 mol = 46.9 g/mol
That is similar to the atomic mass of titanium which is 47.9 g / mol and whose valece is 2+.
4) Case 3
4 mol meta X / 3 mol O2 = x / 0.01226 => x = 0.01226 * 4 / 3 = 0.01635
atomic mass = 1.15 g / 0.01635 mol = 70.33 g/mol
That does not correspond to any metal.
Conclusion: the identity of the metallic element could be titanium.
Answer: The author used the word "conversely" because the first statement he made is in CONTRAST to the second statement he made.
Explanation:
Matter is made up of atoms or molecules that are in constant motion. The motion of these tiny particles ( molecules) gives the object energy. The movement of these molecules depends on the state of matter which includes
--> GASEOUS STATE: Here, the particles are completely free to move and are always in motion.
--> LIQUID STATE: particles in this state slide by one another and are always in motion.
--> SOLID STATE: particles in this state are held tightly together but are always in motion.
Also, the molecules in motion are greatly affected by temperature changes. Increase in temperature will cause the particles in the liquid to move faster. Such is seen when soup is heated, the molecules travel faster than before. But the OPPOSITE is seen in an ice cube. This is because the ice cube is in solid state and of a lower temperature.
Answer:
6.564×10¹⁶ fg.
Explanation:
The following data were obtained from the question:
Mass of beaker = 76.9 g
Mass of beaker + salt = 142.54 g
Mass of salt in fg =?
Next, we shall determine the mass of the salt in grams (g). This can be obtained as follow:
Mass of beaker = 76.9 g
Mass of beaker + salt = 142.54 g
Mass of salt =?
Mass of salt = (Mass of beaker + salt) – (Mass of beaker)
Mass of salt = 142.54 – 76.9
Mass of salt = 65.64 g
Finally, we shall convert 65.64 g to femtograms (fg) as illustrated below:
Recall:
1 g = 1×10¹⁵ fg
Therefore,
65.64 g = 65.64 g × 1×10¹⁵ fg / 1g
65.64 g = 6.564×10¹⁶ fg
Therefore, the mass of the salt is 6.564×10¹⁶ fg.
Separation will be achieved if one component adheres to the stationary phase more than the other component does.