Chemical equation is the symbolic representation of chemical reactions.
Explanation
Chemical reactions are known as the reaction where two or more molecules or compounds react with each other leading to formation of product compounds along with either release or absorption of energy.
The symbolic representation of the processes occurring in a chemical reaction is termed as chemical equation.
The symbolic representation includes the reactants, products, external energy type and quantity of external energy and also about release of energy if occurs.
So the reactants are usually written in the left side of the chemical equation whereas on the right the products are written.
Both the sides are linked by a single headed arrow mark.
Some both the sides are linked by double heated arrow mark indicating the equilibrium chemical reaction.
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
Answer:
the work input is depented on the work output
Explanation:
Baking powder is used to increase the volume and lighten the texture of baked goods. It works by releasing carbon dioxide gas into a batter or dough through an acid–base reaction, causing bubbles in the wet mixture to expand and thus leavening the mixture.
Protons and neutrons are located in the nucleus of the atom while the electrons move in the trajectory of the shell
<h3>Further explanation
</h3>
Isotopes are atoms whose no-atom has the same number of protons while still having a different number of neutrons.
So Isotopes are elements that have the same Atomic Number (Proton)
Isotopes of Helium : helium-3 and helium-4
protons = 2
electrons=protons=2
neutron=mass number-atomic number=3-2=1
protons = 2
electrons=protons=2
neutron=mass number-atomic number=3-2=1
protons = 2
electrons=protons=2
neutron=mass number-atomic number=4-2=2
Protons and neutron in the nucleus, electrons in the shell