Equilibrium occurs when the rate of the forward reaction is the same as the rate of the reverse reaction. This doesn't necessarily mean the concentrations or pressure are the same on both sides of the equation, only the rates are the same
Answer:
D.Lowering the temperature is the best option.
Explanation:
The value of equilibrium constants aren't changed with change in the pressure or concentrations of reactants and products in equilibrium. The only thing that changes the value of equilibrium constant is a change of temperature.
In the reaction below for example;
A + B <==>C+D
If you have moved the position of the equilibrium to the right (and so increased the amount of C and D), why hasn't the equilibrium constant increased?
Let's assume that the equilibrium constant mustn't change if you decrease the concentration of C - because equilibrium constants are constant at constant temperature. Why does the position of equilibrium move as it does?
If you decrease the concentration or pressure of C, the top of the Kc expression gets smaller. That would change the value of Kc. In order for that not to happen, the concentrations of C and D will have to increase again, and those of A and B must decrease. That happens until a new balance is reached when the value of the equilibrium constant expression reverts to what it was before.
637
65 times 9.8
Mass times gravitational strength equals weight
According of Dalton's law of Partial pressure, the total pressure of a mixture of gases is the sum of the partial pressures of the individual vases in the mixture.
Hence;
The for hydrogen collected over water, we have a mixture of hydrogen gas and water vapour.
Total pressure = pressure of hydrogen gas + vapour pressure of water
Pressure of hydrogen gas = Total pressure - vapour pressure of water
Pressure of hydrogen gas = 636 mmHg - 28.3 mmHg
Pressure of hydrogen gas = 607.7 mmHg