Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
Answer:
E = 2.7 x 10¹⁶ J
Explanation:
The release of energy associated with the mass can be calculated by Einstein's mass-energy relation, as follows:

where,
E = Energy Released = ?
m = mass of material reduced = 0.3 kg
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>E = 2.7 x 10¹⁶ J</u>
The motion of the racers might change from the start because the pressure goes up so all the racer wants is to speed up and win, so when the racer first starts he or she is calm because he's not driving yet and when he or she is on his/hers way to he finish line he/she just wants to win and gets under pressure so he speeds up even more and drifts. Your welcome
See
K.E=1/2(mass*velocity²)
so option B is the correct answer.
Brainliest pls :-)
The moon's orbital and rotational periods are identical or the same, I<span>ts rate of spin is done in unison with its rate of revolution (the time that is needed to complete one orbit). Thus, the moon rotates exactly once every time it circles the Earth.</span>