Depends on the weight of the bird.
1) Half a mile is about 800m.
2) 14000 lbs = about 6 tones, same like couple 4WD
3) Fuel consumption is about 20L per 100km or 0.2l each 1km or 0.16L within 800m
4) density of fuel is about 70% of density of water so .... weight of 1.6L of fuel burned would be about 1.6*0.7=1.1 kg
So if birds mass would be below 1 kg - the bridge will not collapse. But if it would be a pelican with the mass of 9kg - it would be a drama :)
Answer:
the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Explanation:
The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

15 - (1/200) L = 5 + (1/200) L
15 - 5 = (1/200) L + (1/200) L
10 = (2/200) L
(10*200)/2 = L
1000 = L
Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:
W = 15 - (1/200) L
W = 15 - (1/200) 1000
W = 10
Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Answer: acceleration is 6 m/s²
Explanation: V = vo + at. If initial speed Is zero,
V = at and a= V/t = 3m/s /0.5 s
Answer:
Part a)

Part b)
v = 3.64 m/s
Part c)

Part d)

Explanation:
As we know that moment of inertia of hollow sphere is given as

here we know that

R = 0.200 m
now we have


now we know that total Kinetic energy is given as





Part a)
Now initial rotational kinetic energy is given as



Part b)
speed of the sphere is given as
v = 3.64 m/s
Part c)
By energy conservation of the rolling sphere we can say




Part d)
Now we know that



