Answer:
30 m/s
Explanation:
Applying,
v = u+at................ Equation 1
Where v = final speed of the ball, u = initial speed of the ball, a = acceleration, t = time.
From the question,
Given: u = 0 m/s (stationary), a = 600 m/s², t = 0.05 s
Substitute these values into equation 5
v = 0+(600×0.05)
v = 30 m/s
Hence the speed at which the ball leaves the player's boot is 30 m/s
Conflict resolution is conceptualized as the methods and processes involved in facilitating the peaceful ending of conflict and retribution.
(a) 1800 N
The equation of the forces along the vertical direction is:

where
is the component of the applied force along the vertical direction
N is the normal force on the sled
mg is the weight of the sled
Substituting:
F = 1210 N
m = 246 kg

We find N:

(b) 0.580
The equation of the forces along the horizontal direction is:

where
is the horizontal component of the push applied by the mule
is the static frictional force
Substituting:
F = 1210 N
N = 1800 N

We find
, the coefficient of static friction:

(c) 522 N
In this case, the force exerted by the mule is

So now the equation of the forces along the horizontal direction can be written as

where

and
is the new frictional force, which is different from part (b) (because the value of the force of friction ranges from zero to the maximum value
, depending on how much force is applied in the opposite direction)
Solving the equation,

Answer:
For outer points of shell

Now for inner point of shell

Explanation:
As we know that out side the shell electric potential is given as

inside the shell the electric potential is given as

now we know the relation between electric potential and electric field as

so we can say for outer points of the shell



Now for inner point again we can use the same



Answer:
The answer is (a.) An upward force balances the downward force gravity on the skydiver
The skydiver is falling at a constant velocity because the upward force is balancing the downward force of gravity. According to Newton, the opposite force balance each other. This is stated in Newton's second law of motion.