Incomplete question as the charge density is missing so I assume charge density of 3.90×10^−12 C/m².The complete one is here.
An electron is released from rest at a distance of 0 m from a large insulating sheet of charge that has uniform surface charge density 3.90×10^−12 C/m² . How much work is done on the electron by the electric field of the sheet as the electron moves from its initial position to a point 3.00×10−2 m from the sheet?
Answer:
Work=1.06×10⁻²¹J
Explanation:
Given Data
Permittivity of free space ε₀=8.85×10⁻¹²c²/N.m²
Charge density σ=3.90×10⁻¹² C/m²
The electron moves a distance d=3.00×10⁻²m
Electron charge e=-1.6×10⁻¹⁹C
To find
Work done
Solution
The electric field due is sheet is given as
E=σ/2ε₀

Now we need to find force on electron

Now for Work done on the electron
Momentum = mass • velocity
M = m • v
Speed is a scalar quantity
Velocity is a vector quantity
That is truly the only difference
Explanation:
goood and mark this answer as brainliest
Answer:
I'm learning physics too, mabye we can learn together. by the way, the are 2 very good apps with physics : "khan academy" and "crash course"