Answer:
they are the same element because they have the same number of protons and electrons,but a different number of neutrons
Answer:
pressure and temperature are directly proportional.
Explanation:
At constant temperature and pressure the volume of a gas is directly proportional to the number of moles of gas. Also given a constant temperature and volume the pressure of a gas is directly proportional to the number of moles of gas.
This means that if V is constant then
P = n (RT/V) then n= PV/RT. As P is increased, T is also increased thereby decreasing the value of n since pressure and temperature are directly proportional.
Answer:
<u>5 moles S x (36.02 g S/mole S) = 180.1 grams of S</u>
Explanation:
The periodic table has mass units for every element that can be correlated with the number of atoms of that element. The relationship is known as Avogadro's Number. This number, 6.02x
, is nicknamed the mole, which scientists found to be a lot more catchy, and easier to write than 6.02x
. <u>The mole is correlated to the atomic mass of that element.</u> The atomic mass of sulfur, S, is 36.02 AMU, atomic mass units. <u>But it can also be read as 36.02 grams/mole.</u>
<u></u>
<u>This means that 36.02 grams of S contains 1 mole (6.02x</u>
<u>) of S atoms</u>.
<u></u>
This relationship holds for all the elements. Zinc, Zn, has an atomic mass of 65.38 AMU, so it has a "molar mass" of 65.38 grams/mole. ^5.38 grams of Zn contains 1 mole of Zn atoms.
And so on.
5.0 moles of Sulfur would therefore contain:
(5.0 moles S)*(36.02 grams/mole S) = <u>180.1 grams of S</u>
Note how the units cancel to leaves just grams. The units are extremely helpful in mole calculations to insure the correct mathematical operation is done. To find the number of moles in 70 g of S, for example, we would write:
(70g S)/(36.02 grams S/mole S) = 1.94 moles of S. [<u>Note how the units cancel to leave just moles</u>]
Markovnikov rule, in organic chemistry, a generalization, formulated by Vladimir Vasilyevich Markovnikov in 1869, stating that in addition reactions to unsymmetrical alkenes, the electron-rich component of the reagent adds to the carbon atom with fewer hydrogen atoms bonded to it, while the electron-deficient component ...