Lowery-Bronsted theory is applied here. Acc. to this theory Base accepts protons and Acids donate proton.
Part 1:
Aniline is less basic than ethylamine because the lone pair on nitrogen (which accepts proton) is not localized. It resonates throughout the conjugated system of phenyl ring. Hence due to unavailability of electrons for accepting proton it is less basic compare to ethylamine. In ethyl amine the lone pair of electron is localized and available to abstract proton.
Part 2:
In this case the alkyl groups attached to -NH₂ (in ethylamine) and -O⁻ (in ethoxide are same (i.e. CH₃-CH₂-). Ethoxide is more basic than ethylamine because ethoxide is a conjugate base of ethanol (pKa value of ethanol = 15.9 very weak acid) and the conjugate base of weak acid is always a strong base. Secondly, the oxygen atom more Electronegative than Nitrogen atom can attract more electron cloud from alkyl group as compared to Nitrogen in ethylamine. Hence, oxygen in ethoxide attains greater electron cloud than the nitrogen in ethylamine. Therefore, it is more basic than ethylamine.
• Take a look at the steps below to see how to balance this equation. Let's start by writing the unbalanced equation given the information.
Unbalanced Equation : C₃H₈ (g) + O₂ (g) → CO₂ (g) + H₂O (g)
,
Start by Balancing the Carbons : C₃H₈ (g) + O₂ (g) → 3CO₂ (g) + H₂O (g)
Now let's balance the Hydrogen : C₃H₈ (g) + O₂ (g) → 3CO₂ (g) + 4H₂O (g)
Balancing the Oxygen : C₃H₈ (g) + 5O₂ (g) → 3CO₂ (g) + 4H₂O (g)
Balanced Equation : C₃H₈ (g) + 5O₂ (g) → 3CO₂ (g) + 4H₂O (g)
• Let's apply dimensional analysis here,
0.7 L propane × (5 liters Oxygen / 1 liter Propane) = 3.5 Liters of Oxygen
• Similarly we can identify the liters of carbon dioxide produced in the reaction,
0.7 L propane × (3 liters Carbon Dioxide / 1 liter Propane) = 2.1 Liters of Carbon Dioxide
• 0.7 L propane × (4 liter water vapor / 1 liter propane ) = 2.8 Liters of Water Vapor
A change of state (which is a physical change) can cause gas.
We will balance the equation in the following order: metals, amethals, carbon, hydrogen and oxygen (the most common order).
The metal present in the equation is Sr, which is already balanced (there are 1 on each side of the equation).
The amethal present in the equation is Cl. There is 2 Cl in the left side and only one in the right side. So, we will multiply the quantity of the molecule that contains Cl by 2. Doing this, we'll obtain:
Looking at the equation, we can see that it is now fully balanced. Hence, a balanced equation of the reaction is: