The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
Explanation:
1. Phases of Venus: Galileo was the first astronomer to use a telescope to observe the celestial objects. Through a telescope he observed that Venus shows the phases just like the Moon. This proved the Heliocentric theory correct against the then prevalent Geocentric theory.
2. Law of Falling bodies: The acceleration due to gravity is independent of weight of the objects that means two bodies of different mass will hit the ground at the same time if dropped from the same height.
3. The uneven surface of the Moon: He observed that the surface of the Moon is uneven and rough.
4. Discovery of the 4 Moons of Jupiter
Answer:
When the object is placed between centre of curvature and principal focus of a concave mirror the image formed is beyond C as shown in the figure and it is real, inverted and magnified.
Answer:
Approximately
, assuming that the gravitational field strength is
.
Explanation:
Let
denote the required angular velocity of this Ferris wheel. Let
denote the mass of a particular passenger on this Ferris wheel.
At the topmost point of the Ferris wheel, there would be at most two forces acting on this passenger:
- Weight of the passenger (downwards),
, and possibly - Normal force
that the Ferris wheel exerts on this passenger (upwards.)
This passenger would feel "weightless" if the normal force on them is
- that is,
.
The net force on this passenger is
. Hence, when
, the net force on this passenger would be equal to
.
Passengers on this Ferris wheel are in a centripetal motion of angular velocity
around a circle of radius
. Thus, the centripetal acceleration of these passengers would be
. The net force on a passenger of mass
would be
.
Notice that
. Solve this equation for
, the angular speed of this Ferris wheel. Since
and
:
.
.
The question is asking for the angular velocity of this Ferris wheel in the unit
, where
. Apply unit conversion:
.