Answer:potential difference is more or less like voltage. Using ohms, V=IR
Where V is Voltage
I is Current =0.4A
R is Resistance=20ohms
V=0.4*20
V=8V
Hence the potential difference will be 8V.
ii) V=0.4*30
V=12V
Explanation:
The voltage of potential difference is directly proportional to the current and the resistance. So if one increase or decrease, it will have impact on the other.
From the calculations, when the resistance increase, the voltage will increase to appreciate the change.
Answer:
which corresponds to the second option shown: "voltage times amperage"
Explanation:
The electric power is the work done to move a charge Q across a given difference of potential V per unit of time.
Since such electrical work is the product of the potential difference V times the charge that moves through that potential, and this work is to be calculated by the unit of time, we need to divide the product by time (t) which leads to the following final simple equation:

Notice that we replaced the quotient representing charge per unit of time (Q/t) by the actual current running through the circuit.
This corresponds to the second option shown in the question: "Voltage times amperage".
Answer:
Explanation:
The question here is that if sneezy hands from a similar rope while delivering presents at the earth's equator, what will be the tension in the rope be. Here is the solution:The tension on the rope when it is at pole, T= 455 NTo find, the tension, t= mgTo solve for mass, m= t/g. Substituting this we have, m=455/9.8. m=46.43 kgAssume that the downwards acceleration is, a= -46.43 m/s^2.T = mg + maT = (46.43 kg) ( 9.8 m/s^2) - (46.43 kg) (-46.43 m/s^2)T = 455.01 kg-m/s^2 - -2155.74 kg-m/s^2T = 2610.75 kg-m/s^2 = 2610.75 N
Explanation:
The forces acting on the rock include Normal Force, Gravitational force & Friction force
It's possible for it to stay on the boulder because the normal force balances it's weight. also because static friction acts on the boulder up to it's limiting friction even if it were on an attempt to move as a result of air resistance. gravitational forces act upon it by mainly affecting it it's weight. as altitude increases, it's weight decreases since gravity varies from a height to another.