Answer:
Number of Wire Turns in the Coil.
Explanation:
The greater the number of turns of wire in the coil, the greater the inductance. Fewer turns of wire in the coil results in lesser inductance. More coils of wires indicate a greater amount of magnetic field force for a given amount of coil current.
Answer:
I am not really sure, but it is probably Carbon Dioxide
Explanation:
Answer:
7 meters, 2.8 meters
Explanation:
work done (nm) = force (n) * distance (m)
140= 20 * m
140/20 = m
m=7 meters
140= 50 * m
140/50 = m
m= 2.8 meters
It would be A because it would make sense
(a) The horizontal and vertical components of the ball’s initial velocity is 37.8 m/s and 12.14 m/s respectively.
(b) The maximum height above the ground reached by the ball is 8.6 m.
(c) The distance off course the ball would be carried is 0.38 m.
(d) The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
<h3>
Horizontal and vertical components of the ball's velocity</h3>
Vx = Vcosθ
Vx = 39.7 x cos(17.8)
Vx = 37.8 m/s
Vy = Vsin(θ)
Vy = 39.7 x sin(17.8)
Vy = 12.14 m/s
<h3>Maximum height reached by the ball</h3>

Maximum height above ground = 7.51 + 1.09 = 8.6 m
<h3>Distance off course after 2 second </h3>
Upward speed of the ball after 2 seconds, V = V₀y - gt
Vy = 12.14 - (2x 9.8)
Vy = - 7.46 m/s
Horizontal velocity will be constant = 37.8 m/s
Resultant speed of the ball after 2 seconds = √(Vy² + Vx²)

<h3>Resultant speed of the ball and crosswind</h3>

<h3>Distance off course the ball would be carried</h3>
d = Δvt = (38.72 - 38.53) x 2
d = 0.38 m
The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
Learn more about projectiles here: brainly.com/question/11049671