I believe the correct response would be B. It would decrease.
Answer:
- This means that the integral of the square modulus over the space is dimensionless.
Explanation:
We know that the square modulus of the wavefunction integrated over a volume gives us the probability of finding the particle in that volume. So the result of the integral
must be dimensionless, as represents a probability.
As the differentials has units of length
for the integral to be dimensionless, the units of the square modulus of the wavefunction has to be:
taking the square root this gives us :
Answer:
12 nC
Explanation:
Capacity of the parallel plate capacitor
C = ε₀ A/d
ε₀ is constant having value of 8.85 x 10⁻¹² , A area of plate , d is distance between plate
Area of plate = π r²
= 3.14 x (0.8x 10⁻²)²
= 2 x 10⁻⁴
C = ( 8.85 X 10⁻¹² x 2 x 10⁻⁴ ) / 2.8 x 10⁻³
= 7.08 x 10⁻¹³
Potential difference between plate = field strength x distance between plate
= 6 x 10⁶ x 2.8 x 10⁻³
= 16.8 x 10³ V
Charge on plate = CV
=7.08 x 10⁻¹³ X 16.8 X 10³
11.9 X 10⁻⁹ C
12 nC .
Answer:
This question is not complete but the completed question is below
Which statement is not correct for lamps connected in parallel?
A They can be switched on and off separately.
B They will remain bright if another lamp is connected in parallel.
C They share the supply voltage equally between them.
D They still operate if one lamp is removed.
The correct option is A
Explanation:
Lamps connected in series have the same voltage running across each lamp in the connection and will thus have the same brightness if any lamp is added or removed. This property also means they can only be switched on and off by a single switch, hence option A is not correct about lamps connected in parallel.