Answer:
Its powered by water
Explanation:
Its clean fuel source, meaning that it wont polute the air
It should be for the total solution of 93 plus 20 grams which is 113 grams so 93 divided by 113 grams comes to 82.3% sodium sulfate and this can be checked by multiplying 113 grams by 0.823 which results in 93 grams of sodium sulphate.
Answer:
Salt domes storage has advantages in cost, security, environmental risk, and maintenance. Salt formations offer the lowest cost, most environmentally secure way to store crude oil for long periods of time. Stockpiling oil in artificially-created caverns deep within the rock-hard salt costs historically about $3.50 per barrel in capital costs. Storing oil in above ground tanks, by comparison, can cost $15 to $18 per barrel - or at least five times the expense. Also, because the salt caverns are 2,000-4,000 feet below the surface, geologic pressures will sea; any crack that develops in the salt formation, assuring that no crude oil leaks from the cavern. An added benefit is the natural temperature differential between the top of the caverns and the bottom - a distance of around 2,000 feet; the temperature differential keeps the crude oil continuously circulating in the caverns, giving the oil a consistent quality.
Your answer is probably
Vaporization point
Answer:
The molarity of the dissolved NaCl is 6.93 M
Explanation:
Step 1: Data given
Mass of NaCl = 100.0 grams
Volume of water = 100.0 mL = 0.1 L
Remaining mass NaCl = 59.5 grams
Molar mass NaCl= 58.44 g/mol
Step 2: Calculate the dissolved mass of NaCl
100 - 59. 5 = 40.5 grams
Step 3: Calculate moles
Moles NaCl = 40.5 grams / 58.44 g/mol
Moles NaCl = 0.693 moles
Step 4: Calculate molarity
Molarity = moles / volume
Molarity dissolved NaCl = 0.693 moles / 0.1 L
Molarity dissolved NaCl = 6.93 M
The molarity of the dissolved NaCl is 6.93 M