The answer is C. Light because light is a form of energy
Answer:
We don't have the passage. A random sampling of surfactant uses includes:
- removal of oily materials from objects (clothes and dishes)
- forms remarkable structures called bubbles
- Assists in forming emulsions (e.g., mayonaise and paints)
Explanation:
The structure of a surfactant makes one end of a molecule hydrophilic and the other end hydrophobic. In water, they self-assemble into micelles, an arrangement in which the hydrophobic ends align towards the center, and the hydrophilic ends are pointed outwards to the water. This self-assembly is apparant when bubbles are made. The molecules quickly align themselves such that the hyrophilic ends are oriented inwards towards a thin layer of water and the hydrophobic ends are pointed outward to the air. This arrangement allows a mono-molecular sphere of water molecules to remain stable enough to float, reflect light, and please. These same properties allow the inverse to occur. Soap molecules surround a hydrophobic mass (e.g., the hamburger grease on your shirt) and solubilize it into small micelles which are then carried away in the surrounding water.
B. Rotten orange is the correct answer. Hope this helps!
Answer:
The chemical equation needs to be balanced so that it follows the law of conservation of mass.
Explanation:
Answer:
1.32×10²⁵ atoms of sulfate are contained in 22 units of it
Explanation:
1 unit = 1 mol
Al₂(SO₄)₃ → Aluminum sulfate
As 1 unit = 1 mol, 1 unit has 6.02×10²³ atoms of aluminum sulfate.
Let's make a rule of three:
1 unit of Al₂(SO₄)₃ contains 02×10²³ atoms
Then, 22 units of Al₂(SO₄)₃ must contain (22 . 6.02×10²³) / 1 = 1.32×10²⁵ atoms