1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
8

How is air pressure related to elevation?

Physics
1 answer:
exis [7]3 years ago
6 0
Air pressure decreases with altitude

hope that helps you!
You might be interested in
The kinetic energy of a sliding block came from the:
patriot [66]

Answer:

Correct sentence: gravitational potential energy of the mass on the hook.

Explanation:

The mechanical energy of a body or a physical system is the sum of its kinetic energy and potential energy. It is a scalar magnitude related to the movement of bodies and to forces of mechanical origin, such as gravitational force and elastic force, whose main exponent is Hooke's Law. Both are conservative forces. The mechanical energy associated with the movement of a body is kinetic energy, which depends on its mass and speed. On the other hand, the mechanical energy of potential origin or potential energy, has its origin in the conservative forces, comes from the work done by them and depends on their mass and position. The principle of conservation of energy relates both energies and expresses that the sum of both energies, the potential energy and the kinetic energy of a body or a physical system, remains constant. This sum is known as the mechanical energy of the body or physical system.

Therefore, the kinetic energy of the block comes from the transformation in this of the gravitational potential energy of the suspended mass as it loses height with respect to the earth, keeping the mechanical energy of the system constant.

3 0
3 years ago
A sample of metallic frewium weighs 185N on a spring scale in air. When immersed in pure water, the frewium pulls on the scale w
balu736 [363]

Wow !  This one could have some twists and turns in it.
Fasten your seat belt.  It's going to be a boompy ride.

-- The buoyant force is precisely the missing <em>30N</em> .

--  In order to calculate the density of the frewium sample, we need to know
its mass and its volume.  Then, density = mass/volume .

-- From the weight of the sample in air, we can closely calculate its mass.

   Weight = (mass) x (gravity)
   185N = (mass) x (9.81 m/s²)
   Mass = (185N) / (9.81 m/s²) = <u>18.858 kilograms of frewium</u> 

-- For its volume, we need to calculate the volume of the displaced water.

The buoyant force is equal to the weight of displaced water, and the
density of water is about 1 gram per cm³.  So the volume of the
displaced water (in cm³) is the same as the number of grams in it.

The weight of the displaced water is 30N, and weight = (mass) (gravity).

           30N = (mass of the displaced water) x (9.81 m/s²)

           Mass = (30N) / (9.81 m/s²) = 3.058 kilograms

           Volume of displaced water = <u>3,058 cm³</u>

Finally, density of the frewium sample = (mass)/(volume)

      Density = (18,858 grams) / (3,058 cm³) = <em>6.167 gm/cm³</em> (rounded)

================================================

I'm thinking that this must  be the hard way to do it,
because I noticed that

       (weight in air) / (buoyant force) =  185N / 30N = <u>6.1666...</u>

So apparently . . .

        (density of a sample) / (density of water) =

                                  (weight of the sample in air) / (buoyant force in water) .

I never knew that, but it's a good factoid to keep in my tool-box.


3 0
3 years ago
The conduction velocity of an axon is determined by:
Marina86 [1]

The conduction velocity of an axon is determined by myelin sheath

thickness and internode distance.

Axon are structures in the neuron which is involved in the conduction of

impulses away from the cell body. Axons which have myelin sheath conduct

impulses faster than those without it.

Axons which have thicker myelin sheath and longer internode distance will

increase the conduction velocity of an axon and vice versa.

Read more on brainly.com/question/23488967

4 0
2 years ago
Consider a block on frictionless ice. Starting from rest, the block travels a distance din
sweet [91]

Answer:

<em>The distance is now 4d</em>

Explanation:

<u>Mechanical Force</u>

According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:

F = m.a

Where a is the acceleration of the object.

The acceleration can be calculated by solving for a:

\displaystyle a=\frac{F}{m}

Once we know the acceleration, we can calculate the distance traveled by the block as follows:

\displaystyle d = vo.t+\frac{at^2}{2}

If the block starts from rest, vo=0:

\displaystyle d = \frac{at^2}{2}

Substituting the value of the acceleration:

\displaystyle d = \frac{\frac{F}{m}t^2}{2}

Simplifying:

\displaystyle d = \frac{Ft^2}{2m}

When a force F'=4F is applied and assuming the mass is the same, the new acceleration is:

\displaystyle a'=\frac{4F}{m}

And the distance is now:

\displaystyle d' = \frac{4Ft^2}{2m}

Dividing d'/d:

\displaystyle \frac{d' }{d}=\frac{\frac{4Ft^2}{2m}}{\frac{Ft^2}{2m}}

Simplifying:

\displaystyle \frac{d' }{d}=4

Thus:

d' = 4d

The distance is now 4d

3 0
3 years ago
Eric has a mass of 19.0 kg on the earth. What is Eric's weight on earth? What is Eric's weight on Mars? where the acceleration o
Tom [10]

Answer:

Weight on Earth = We = 186.2 N

Weight on Mars = Wm = 70.94 N

Explanation:

The weight of an object is defined as the force applied on the object by the gravitational field. The magnitude of weight is given by the following formula:

W = mg

were,

W= Weight of Eric

m = mass of Eric

g = acceleration due to gravity

ON EARTH:

W = We = Eric's Weight on Earth = ?

m = Eric's Mass on Earth = 19 kg

ge = acceleration due to gravity on Earth = 9.8 m/s²

Therefore,

We = (19 kg)(9.8 m/s²)

<u>We = 186.2 N</u>

<u></u>

ON MARS:

W = Wm = Eric's Weight on Mars = ?

m = Eric's Mass on Mars = 19 kg

gm = acceleration due to gravity on Mars = 0.381(ge) = (0.381)9.8 m/s² = 3.733 m/s²

Therefore,

Wm = (19 kg)(3.733 m/s²)

<u>Wm = 70.94 N</u>

3 0
3 years ago
Other questions:
  • A european car manufacturer reports that the fuel efficiency of the new microcar is 28.5 km/l highway and 22.0 km/l city. what a
    15·1 answer
  • How would the number 13,900 be written using scientific notation?
    7·1 answer
  • Match the correct term with each part of the wave
    7·1 answer
  • You turn on a light and observe cockroaches scurrying to dark hiding places. wha have you observed?
    11·2 answers
  • Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and was brought jarringly back
    9·1 answer
  • Compare the practical uses and limitations of nuclear fission and fusion. Include in your answer a detailed description of the t
    14·1 answer
  • Consider the following:
    15·1 answer
  • Any girls come to talk on insta or here<br>​
    13·1 answer
  • 2. A 75 kg runner accelerates from 0.00 m/s to 10.0 m/s in 1.5 seconds.
    10·1 answer
  • Which of these is the BEST answer for why science is important?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!