Answer:
The materials with which the lab group are to use for the model includes;
i) A candle
ii) A match
iii) A strip of cloth
iv) Tongs
v) A metal can
The processes the lab group are to model are;
a) Conduction
b) Convection
c) Radiation
The procedure the lab group can use to do this is outlined as follows;
1) Tie the piece of cloth around the metal can with a strip of the cloth extending past the bottom of the can
2) Hold the metal can in with the aid of the tongs
3) Light the candle with the match
4) Place the metal can over over the burning candle so that it does not touch the flame
5) While holding the can with the tongs, ensure that the strip of cloth hanging by the side of the can does not come in contact with the flame
Conduction
Conduction heat transfer is observed by the rising temperature of the tongs that is in the contact with the can
Convection
Convection heat transfer is observed by the rising temperature of the can that is placed in the path of the rising convection current from the candle wax
Radiation
Radiation heat transfer is observed by the shrinking of the piece of cloth placed beside the candle flame
Explanation:
Heat does not rise or fall because it is an energy being transferred. It is the hot air which rises because colder air is denser than hotter air.
The moon dosent revolve around earth as the earth rotates the moon stays in the same place
According to Ohm's Law:

Where: V = Voltage
I = Current
R = Resistance
As you can see here, you can say that Current is directly proportional to Voltage and indirectly proportional to Resistance. This means that as the voltage increases, current increases and as the resistance increases, current decreases.
So in your scenario, if the voltage remains the same, but the resistance is doubled, that means that the current will be halved.
So the answer to your question is 2. the current will drop to half of its original value.