initial speed of the racer is given as


after applied force the final speed is given as


now during this speed change the racer will cover total distance 185 m
so here we will use kinematics



now the force that chute will exert on the racer will be given as



B) here following is the strategy for solving it
1. first we used kinematics to find the acceleration of the car
2. then we used Newton's II law (F = ma) to find the force
I guess b tell me if I’m wrong
Given what we know, we can confirm that this result from the goalie is a clear indicator of room for improvement in the reaction speed and visual coordination for this area of the net.
<h3>How can the goalie improve reaction speeds to this area?</h3>
The key for situations like this is simply repetition. The more the goalie is able to practice with shots in this area of the net, the more muscle memory they will build regarding reacting to these shots, and therefore less time will be needed to block them in the future.
Therefore, we can confirm that this result from the goalie is a clear indicator of room for improvement in the reaction speed and visual coordination for this area of the net.
To learn more about reaction speeds visit:
brainly.com/question/8186329?referrer=searchResults
Answer:
maximum possible temperature is 34.088°C
Explanation:
Given data
power output Q = 37 kW
volume flow rate = 11 x 10^-5 m3/s
temperature t = 14°C
to find out
maximum possible temperature T
solution
we can say
total water volume = 4 residents × volume flow
total water volume = 4 × 11 x 10^-5 = 44 × 10^-5 m³/s
so we say total water mass = 1000 × volume
total water mass = 1000 kg/m³ × 44 × 10^-5
total water mass = 0.44 kg
we know
dQ/dt = (dm/dt)× (S)× ( T - t)
so here we know specific heat of water S = 4.186 joule/gram °C
37 = 0.44 × 4.186 × (T-14)
T = 34.088°C
maximum possible temperature is 34.088°C
Answer:
The distance of the object to the center of the earth increases.
Explanation:
The acceleration due to gravity on Earth is given by:

where
G is the gravitational constant
M is the Earth's mass
r is the distance of the object from the Earth's centre
We notice that:
- g does not depend on the mass of the object
- g is inversely proportional to r
This means that if the distance of the object from the Earth's centre increases, g decreases. So, the correct option is
The distance of the object to the center of the earth increases.