Answer:
0.001152m
Explanation:
Linear expansivity of a material is the change in length of the material per unit length per degree rise in temperature. Mathematically,
¢ = ∆L/L1∆°C
¢ is the linear expansivity of the material = 12 x 10⁻⁶ °C⁻¹
Where ∆L is the change in length = L2-L1
L2 is the final length = ?
L1 is the initial length = 12m
∆°C is the change in temperature = °C2 - °C1 = 50-(-30) = 80°C
Substituting this values inside the formula to get the final length L2 after expansion, we have;
12 x 10⁻⁶ °C⁻¹ = L2-12/12×80
12 x 10⁻⁶ °C⁻¹ = L2-12/960
L2-12= 960×12 x 10⁻⁶ °C⁻¹
L2-12 = 0.001152
L2 = 12+0.001152
L2 = 12.001152m
Expansion will be the change in length L2-L1 = 12.001152-12
= 0.001152m
The expansion cracks between the slabs should be 0.001152m wide to prevent buckling
Answer:
See in explanation
Explanation:
Scientific use: The Einstein's THEORY of relativity states that "Time Is Absolute".
Everyday use: Einstein's LAW of relativity says that time is not the same at all places and events.
Answer:
68.75W
Explanation:
Heat transfer is describe as the flow of thermal energy as a result of changes in temperature between two or more bodies. Heat transferred via solid bodies is called conduction, and that associated with liquids and gases is called convection, and likewise, the one attributed to electromagnetical waves is called radiation.
heat transfer from the tube wall to the water = kA.ΔT
= 3500* π* (2.5 * 10⁻²)²/4 *40
= 68.75W
Answer:
The two main reasons that your results might not match up each time are uncontrolled conditions and experimental error.