Answer:
Option b
Explanation:
Metamorphism is the process where the variation of the geological texture resulting from the different arrangement of the minerals or the variation of minerals in protoliths, i.e., pre- existing rocks take place such that there occurs no change in state of the protolith, i.e., it does not melt into magma.
The change takes place as a result of the presence of chemically active fluids, heat and pressure.
There is a reaction between the chemically active fluid and the rock through which it passes and promotes the movement of the dissolved ions of silicate and promotes the growth of the mineral grains.
Because the specimen is very small with a light microscope
2,450 Joules, kinetic energy is 1/2 mass x velocity squared.
The period of the transverse wave from what we have here is 0.5
<h3>How to find the period of the transverse wave</h3>
The period of a wave can be defined as the time that it would take for the wave to complete one complete vibrational cycle.
The formula with which to get the period is
w = 4π
where w = 4 x 22/7
2π/T = 4π
6.2857/T = 12.57
From here we would have to cross multiply
6.2857 = 12.57T
divide through by 12.57
6.2857/12.57 = T
0.500 = T
Hence we can conclude that the value of T that can determine the period based on the question is 0.500.
Read more on transverse wave here
brainly.com/question/2516098
#SPJ4
Answer: Here this will help you..
Explanation:
1 kg-m/s to kilogram-force meter/second = 1 kilogram-force meter/second
5 kg-m/s to kilogram-force meter/second = 5 kilogram-force meter/second
10 kg-m/s to kilogram-force meter/second = 10 kilogram-force meter/second
20 kg-m/s to kilogram-force meter/second = 20 kilogram-force meter/second
30 kg-m/s to kilogram-force meter/second = 30 kilogram-force meter/second
40 kg-m/s to kilogram-force meter/second = 40 kilogram-force meter/second
50 kg-m/s to kilogram-force meter/second = 50 kilogram-force meter/second
75 kg-m/s to kilogram-force meter/second = 75 kilogram-force meter/second
100 kg-m/s to kilogram-force meter/second = 100 kilogram-force meter/second