Answer:
<h3> b. 1.18</h3>
Explanation:
The fundamental frequency in string is expressed as;
F1 = 1/2L√T/m .... 1
L is the length of the string
T is the tension
m is the mass per unit length
If the tension is increased by 40%, the new tension will be;
T2 = T + 40%T
T2 = T + 0.4T
T2 = 1.4T
The new fundamental frequency will be;
F2 = 1/2L√1.4T/m ..... 2
Divide 1 by 2;
F2/F = (1/2L√1.4T/m)/1/2L√T/m)+
F2/F = √1.4T/m ÷ √T/m
F2/F = √1.4T/√m ×√m/√T
F2/F = √1.4T/√T
F2/F = 1.18√T/√T
F2/F = 1.18
F2 = 1.18F
Hence the fundamental frequency of vibration changes by a factor of 1.18
I think the puck pushes the stick backwards
Alaska- Subartic Climate
Portland, Oregon- Marine West Coast Climate
Key West, Florida- Tropical Savannah Climate
The force exerted by the magnetic in terms of the magnetic field is,

Where B is the magnetic fied strength and F is the force.
Thus, if the magnetic A has twice magnetic field strength than the magnet B,
Then,

Thus, the force exerted by the magnet B is,

Thus, the force exerted by the magnet B on magnet A is 50 N.
The force exerted by the magnet A exerts on the magnet B is exactly 100 N as given.
Hence, the option B is the correct answer.
Linear momentum of a truck is 1,50,000 kg.m/s
Explanation:
Linear momentum is the product of the mass and velocity of an object. It is a vector quantity, which have a magnitude and a direction.
Linear momentum is a property of an object which is in motion with respect to a reference point (i.e. any object changing its position with respect to the reference point).
It's SI units are kg.m/s
Linear momentum is a vector quantity.
Linear momentum formula (p) = mass × velocity
Given data mass = 5000 kg ; velocity = 30 m/s
P = 5000 × 30
Linear momentum p= 1,50,000 kg.m/s