A=F/m
a=(3000000)/(20000)
a=15 m/s^2
Complete Question
Planet D has a semi-major axis = 60 AU and an orbital period of 18.164 days. A piece of rocky debris in space has a semi major axis of 45.0 AU. What is its orbital period?
Answer:
The value is
Explanation:
From the question we are told that
The semi - major axis of the rocky debris 
The semi - major axis of Planet D is 
The orbital period of planet D is 
Generally from Kepler third law

Here T is the orbital period while a is the semi major axis
So

=>
=> ![T_R = 18.164 * [\frac{ 45}{60} ]^{\frac{3}{2} }](https://tex.z-dn.net/?f=T_R%20%20%3D%2018.164%20%20%2A%20%20%5B%5Cfrac%7B%2045%7D%7B60%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D)
=>
The increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.
<h3>What is gravitational potential energy?</h3>
The energy that an item has due to its location in a gravitational field is known as gravitational potential energy.
The potential energy increases by 3773 J
PE₂-PE₁=mg(h₂-h₁)
3773 J = 35.0 × 9.81 × (h₂-h₁)
(h₂-h₁) = 10.98
Case 2 ;
ΔPE =?
ΔPE=mg(h₂-h₁)
ΔPE=56.0 × 9.81 ×10.98
ΔPE=6031.97 J.
Hence, the increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.
To learn more about the gravitational potential energy, refer;
brainly.com/question/3884855#SPJ1
#SPJ1
Answer:
Since the distance between the pivot and its weight is zero, the moment of its weight about the pivot (= weight × 0) is zero. Hence, the weight of the ruler can be ignored.
Hope this helps:)
We know that the source of light in the universe is the Sun. Hence, the light we see as moonlight travels from the Sun's surface, to the moon, then to Earth. So, before being able to solve this problem, we have to know the distance between the Sun and the moon, and the distance between the moon and Earth. In literature, these values are 3.8×10⁵ km (Sun to moon) and 384,400 km (moon to Earth). Knowing that the speed of light is 300,000 km per second, then the total time would be
Time = distance/speed
Time = (3.8×10⁵ km + 384,400 km)/300,000 km/s
Time = 2.548 seconds
Thus, it only takes 2.548 for the light from the Sun to reach to the Earth as perceived to be what we call moonlight.