You are LOVED and a Child of JESUS come back he has open arms God bless
The true statement about the wave is that, the wave has traveled 97. 2 cm in 1 second.
In Physics, we define a wave as a disturbance along a medium that transfers energy. The wavelength of a wave is the distance covered by the wave while the frequency of the wave is the number of cycles of the wave completed per second.
The period of the wave is the inverse of the frequency of the wave. It is defined as the time taken for the wave to complete a cycle and it is measured in seconds.
The wave formula is given as;
v = λf
v = velocity of the wave (distance traveled by the wave in one second)
λ = wavelength of the wave
f = frequency of the wave
So;
λ = 32.4 cm
f = 3 hertz
v = 32.4 cm × 3 hertz
v = 97. 2 cms-1
Hence, the true statement about the wave is that, the wave has traveled 97. 2 cm in 1 second.
Learn more: brainly.com/question/14588679
Explanation:
change 0.5 g to kg so 0.005kg then change 100 ml to m so 0.001m so density=mass over volume so from there you can continue
Answer:
0.087 m
Explanation:
Length of the rod, L = 1.5 m
Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.
time period, T = 3 s
the formula for the time period of the pendulum is given by
.... (1)
where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.
Moment of inertia of the rod about the centre of mass, Ic = mL²/12
By using the parallel axis theorem, the moment of inertia of the rod about the pivot is
I = Ic + md²

Substituting the values in equation (1)


12d² -26.84 d + 2.25 = 0


d = 2.15 m , 0.087 m
d cannot be more than L/2, so the value of d is 0.087 m.
Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.
Answer:
When like charges come together, they repel each other. For instance, when the north and south poles of a magnet come together, they push each other apart. The like poles in the magnet repel each other and unlike poles attract each other much. The same reaction occurs in like and unlike charges. Also, the repulsion acts along the line between the two charges.