Answer: 2.78 moles of molecular oxygen will occupy 62.22 liters.
Explanation:
Here we have to calculate the amount of
ion present in the sample.
In the sample solution 0.122g of
ion is present.
The reaction happens on addition of excess BaCl₂ in a sample solution of potassium sulfate (K₂SO₄) and sodium sulfate [(Na)₂SO₄] can be written as-
K₂SO₄ = 2K⁺ + 
(Na)₂SO₄=2Na⁺ + 
Thus, BaCl₂+
= BaSO₄↓ + 2Cl⁻ .
(Na)₂SO₄ and K₂SO₄ is highly soluble in water and the precipitation or the filtrate is due to the BaSO₄ only. As a precipitation appears due to addition of excess BaCl₂ thus the total amount of
ion is precipitated in this reaction.
The precipitate i.e. barium sulfate (BaSO₄)is formed in the reaction which have the mass 0.298g.
Now the molecular weight of BaSO₄ is 233.3 g/mol.
We know the molecular weight of sulfate ion (
) is 96.06 g/mol. Thus in 1 mole of BaSO₄ 96.06 g of
ion is present.
Or. we may write in 233.3 g of BaSO₄ 96.06 g of
ion is present. So in 1 g of BaSO₄
g of
ion is present.
Or, in 0.298 g of the filtered mass (0.298×0.411)=0.122g of
ion is present.
Aromatic side chain exhibits an electronic excited state that is closer in energy to the ground state.
- In order to respond to this query, we must decide whether a peptide bond or an aromatic side chain is demonstrating an electronic exited state that is more closely related to the ground state in terms of energy.
- When our energy is as low as possible, we are in the ground state.
- What I want to point out is that if we can choose between the two options—peptide bond or aromatic side chain—without knowing the specific reasons, we can immediately rule out two potential answers.
- Consider what we already know about energy, we have:
E = h x c/λ
- That indicates that when we have more energy, a wavelength decreases. Lower energy corresponds to higher wavelength.
- Aromatic side chains absorb between 250 and 290 nm, while peptide bonds do so between 190 and 250 nm.
- According to our breakdown, we have an electron excited state that is more closely related to the ground state in terms of energy as wavelength increases.
Thus, Aromatic side chain exhibits an electronic excited state that is closer in energy to the ground state.
To view similar questions about energy, refer to:
brainly.com/question/14483627
#SPJ4