Answer:
New volume = 150 mL
Explanation:
Initial temperature, T₁ = 35°C
Initial volume, V₁ = 350 mL
We need to find the change in volume when the temperature drops to 15°C.
The relation between the temperature and the volume is given by Charle's law. Let new volume is V₂. It can be given by :

So, the new volume is 150 mL.
Answer:
1. (S,O) < (Se,S) < (C,H) = (H,I) = (H,F) < (Si,Cl) < (K,Br)
Explanation:
The covalent character always increases down the group, this is because ionic character decreases down the group and also electronegativity.
In the same way, Covalent character always decreases across a period because electronegativity increases across a period.
The higher the electronegativity values between the two atoms, the more ionic it will be.
Answer:
Because it gives them a full valence shell.
Explanation:
Answer is 0.289nm.
Explanation: The wt % of Fe and wt % of V is given for a Fe-V alloy.
wt % of Fe in Fe-V alloy = 85%
wt % of V in Fe-V alloy = 15%
We need to calculate edge length of the unit cell having bcc structure.
Using density formula,

For calculating edge length,

For calculating
, we use the formula

Similarly for calculating
, we use the formula

From the periodic table, masses of the two elements can be written


Specific density of both the elements are

Putting
and
formula's in edge length formula, we get
![a=\left [\frac{Z\left (\frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{Fe}}{M_{Fe}}} \right )}{N_A\left (\frac{100}{\frac{(wt\%)_V}{\rho_V}+\frac{(wt\%)_V}{\rho_V}} \right )} \right ]^{1/3}](https://tex.z-dn.net/?f=a%3D%5Cleft%20%5B%5Cfrac%7BZ%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B%28wt%5C%25%29_%7BFe%7D%7D%7BM_%7BFe%7D%7D%2B%5Cfrac%7B%28wt%5C%25%29_%7BFe%7D%7D%7BM_%7BFe%7D%7D%7D%20%20%5Cright%20%29%7D%7BN_A%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B%28wt%5C%25%29_V%7D%7B%5Crho_V%7D%2B%5Cfrac%7B%28wt%5C%25%29_V%7D%7B%5Crho_V%7D%7D%20%20%5Cright%20%29%7D%20%20%5Cright%20%5D%5E%7B1%2F3%7D)
![a=\left [\frac{2atoms/\text{unit cell}\left (\frac{100}{\frac{85\%}{55.85g/mol}+\frac{15\%}{50.941g/mol}} \right )}{(6.023\times10^{23}atoms/mol)\left (\frac{100}{\frac{85\%}{7.874g/cm^3}+\frac{15\%}{6.10g/cm^3}} \right )} \right ]^{1/3}](https://tex.z-dn.net/?f=a%3D%5Cleft%20%5B%5Cfrac%7B2atoms%2F%5Ctext%7Bunit%20cell%7D%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B85%5C%25%7D%7B55.85g%2Fmol%7D%2B%5Cfrac%7B15%5C%25%7D%7B50.941g%2Fmol%7D%7D%20%20%5Cright%20%29%7D%7B%286.023%5Ctimes10%5E%7B23%7Datoms%2Fmol%29%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B85%5C%25%7D%7B7.874g%2Fcm%5E3%7D%2B%5Cfrac%7B15%5C%25%7D%7B6.10g%2Fcm%5E3%7D%7D%20%20%5Cright%20%29%7D%20%20%5Cright%20%5D%5E%7B1%2F3%7D)
By calculating, we get

Answer:
0.01144L or 1.144x10^-2L
Explanation:
Data obtained from the question include:
V1 (initial volume) = 20.352 mL
P1 (initial pressure) = 680mmHg
P2 (final pressure) = 1210mmHg
V2 (final volume) =.?
Using the Boyle's law equation P1V1 = P2V2, the volume of the container can be obtained as follow:
P1V1 = P2V2
680 x 20.352 = 1210 x V2
Divide both side by 1210
V2 = (680 x 20.352)/1210
V2 = 11.44mL
Now we need to convert 11.44mL to L in order to obtain the desired result. This is illustrated below:
1000mL = 1 L
11.44mL = 11.44/1000 = 0.01144L
Therefore the volume of the container is 0.01144L or 1.144x10^-2L