Answer:
.
Explanation:
Based on the electron configuration of this ion, count the number of electrons in this ion in total:
.
Each electron has a charge of
.
Atoms are neutral and have
charge. However, when an atom gains one extra electron, it becomes an ion with a charge of
. Likewise, when that ion gains another electron, the charge on this ion would become
.
The ion in this question has a charge of
. In other words, this ion is formed after its corresponding atom gains two extra electrons. This ion has
electrons in total. Therefore, the atom would have initially contained
electrons. The atomic number of this atom would be
.
Refer to a modern copy of the periodic table. The element with an atomic number of
is sulphur with atomic symbol
. To denote the ion, place the charge written backwards ("
" for a charge of
) as the superscript of the atomic symbol:
.
Based upon Max Planck's theory of black-body radiation, Einstein theorized that the energy in each quantum of light was equal to the frequency multiplied by a constant, later called Planck's constant. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect.
Answer:
18 years old or when they become mature.
Explanation:
The balanced chemical equation for the above reaction is as follows;
2Ca + O₂ --> 2CaO
stoichiometry of Ca to O₂ is 2:1
this means that 2 mol of Ca reacts with 1 mol of O₂.
If O₂ is the limiting reactant,
4 mol of O₂ should react with (4x2) - 8 mol of Ca
however only 7.43 mol of Ca is present. Therefore Ca is the limiting reactant.
7.43 mol of Ca reacts with - 7.43/2 = 3.715 mol of O₂
therefore there's excess O₂₂ remaining after the reaction
Since Ca is the limiting reactant, it is fully used up in the reaction and there is no Ca remaining after the reaction is completed.