Answer:
the would test random expirements
The balanced equation for the reaction is as follows;
Ca(OH)₂ + 2HBr --> CaBr₂ + 2H₂O
stoichiometry of Ca(OH)₂ to HBr is 1:2
number of Ca(OH)₂ moles reacted - 0.10 mol/L x 0.1000 L = 0.010 mol
Number of HBr moles added - 0.10 mol/L x 0.4000 = 0.040 mol
1 mol of Ca(OH)₂ needs 2 mol of HBr for neutralisation
therefore 0.010 mol of Ca(OH)₂ needs - 0.010 x 2 = 0.020 mol of HBr to be neutralised
but 0.040 mol of HBr has been added therefore number of moles of HBr in excess - 0.040 - 0.020 = 0.020 mol
then pH of the medium can be calculated using the excess H⁺ ions
HBr is a strong acid therefore complete ionization
[HBr] = [H⁺]
[H⁺] = 0.020 mol / (100.0 + 400.0 mL)
= 0.020 mol / 0.5 L
= 0.040 mol/L
pH = -log[H⁺]
pH = - log [0.040 M]
pH = 1.40
pH of the medium is 1.40
The drug has a concentration of 6 mg per 1 ml. Therefore, to know that number of ml containing 25 grams, we will simply do cross multiplication as follows:
amount of drug = (25 x 1) / 6 = 4.1667 ml
Therefore, for the patient to receive 25 mg of methimazole, he/she should take 4.1667 ml of the drug solution.
Each substance in the mixture<span> keeps its own properties and can be </span><span>easily separated from the </span>mixture.<span> In a mixture of hydrogen and oxygen, molecules of both the gases will exist independently.</span>
The compound<span> on the other hand has properties different from the </span>elements it contains. In water as a compound of hydrogen and oxygen <span>what you will have is molecules of H20.</span>
Explanation:
The reaction equation will be as follows.

It is given that the total energy liberated is -2810 kJ/mol. As the sign is negative this means that energy is being released. Also, it is given that the energy required to synthesis is -64.1 kJ/mol.
Therefore, calculate the number of moles of compound as follows.
No. of moles =
= 
= 43.83 mol
= 44 mol (approx)
Thus, we can conclude that the number of moles of compound is 44 mol.