Reaction rates can be increased if the concentration of reactants is raised. An increase in concentration produces more collisions. The chances of an effective collision goes up with the increase in concentration. The exact relationship between reaction rate and concentration depends on the reaction "mechanism".
Answer:
A liquid changing to a gas is considered a physical change because it involves a change in one or more physical properties, but no change in the fundamental components that make up the substance.
Answer:
heat travels easier through plants so plants dont heat up as much
thus is because metal is much more dense than the grass
Answer:
0.1988 J/g°C
Explanation:
-Qmetal = Qwater
Q = mc∆T
Where;
Q = amount of heat
m = mass of substance
c = specific heat of substance
∆T = change in temperature
Hence;
-{mc∆T} of metal = {mc∆T} of water
From the information provided in this question, For water; m= 22.0g, ∆T = (24°C-19°C), c = 4.18J/g°C.
For metal; m= 34.0g, ∆T = (24°C-92°C), c = ?
Note that, the final temperature of water and the metal = 24°C
-{34 × c × (24°C-92°C)} = 22 × 4.18 × (24°C-19°C)
-{34 × c × (-68°C)} = 459.8
-{34 × c × -68} = 459.8
-{-2312c} = 459.8
+2312c = 459.8
c = 459.8/2312
c = 0.1988
The specific heat capacity of the metal is 0.1988 J/g°C