Answer:
See explanation
Explanation:
The elements in group form univalent positive ions and element in group 17 form univalent negative ions. Hence, when a group 1 element reacts with a group 17 element, a compound of the sort MX is formed. Hence, when a group 1 element reacts with bromine, a salt is formed with the general formula MBr.
Elements of group 1 are highly electro positive metals. They react with water to form the metal hydroxide and release hydrogen gas. Hence, when group 1 elements react with water, hydrogen gas is released.
A group 1 element forms a univalent positive ion while a group 16 element forms a divalent negative ion. Hence, when a groups 1 element reacts with oxygen, the compound formed must have the general formula M2O.
The reactivity of group 1 metal increases down the group hence Cs is the most reactive group 1 element.
Lithium displays a slightly different chemistry from other group 1 elements because of its small size.
Answer:
The value of N would be 4.
Explanation:
The equation would be 2n^x = 32 and therefore, 4.
When we can get the Kinetic energy from this formula KE= 1/2 M V^2
and we can get the potential energy from this formula PE = M g H
we can set that the kinetic energy at the bottom of the fall equals the potential energy at the top so,
KE = PE
1/2 MV^2 = M g H
1/2 V^2 = g H
when V is the velocity, g is an acceleration of gravitational force and H is the height of the fall.
∴ v^2 = 2 * 9.8 * 8 = 156.8
∴ v= √156.8 = 12.5 m/s
Answer:
C6H6
Explanation:
We can obtain the molecular formula from the empirical formula.
What we need do here is:
(CH)n = 78
The n shows the multiples of both element present in the actual compound. It can be seen that carbon and hydrogen have the same element ratio here. We then use the atomic masses of both elements to get the value of n. The atomic mass of carbon is 12 a.m.u while the atomic mass of hydrogen is 1 a.m.u
(1 + 12)n = 78
13n = 78
n = 78/13 = 6
The molecular formula is
(CH)n = (CH)6 = C6H6