Answer:
Calculate the number of moles you have by taking the Mass / molar mass. if you have 1000 grams ; then 1,000 g / 151.001 g/mol = X g moles. Then multiply by Avogadros # = 6.022140857 × 10^23 molecules per g mole. The result is the # of molecules of MnSO4
Explanation: Hope this helps
Answer:
20 moles
Explanation:
The important thing to realize here is that you're working under STP conditions, which implies that you can use the molar volume of a gas at STP to find how many moles of helium will occupy that volume.
Answer:
The two statements are all True for group 7 and 8 elements.
Explanation:
The Group 7 elements are known as the halogens. They are reactive non-metals and are always found in compounds with other elements. Chlorine, bromine and iodine are all halogens.
Chlorine, bromine and iodine are the three common Group 7 elements. Group 7 elements form salts when they react with metals. The term ‘halogen’ means 'salt former'.
In addition to the discription given to norble gases in the question which is true, norble gases;
- are inert gases located on the right of the periodic table.
- have a full-set of valence electrons, so they're stable, unreactive
- are colorless, odorless and tasteless.
- have low melting and low boiling points.
- can be found in small amounts in the Earth's crust and the Earth's atmosphere.
Answer:
Mercury
Explanation:
While it is true that most metals are solid at room temperature, mercury is liquid at room temperature hence mercury is often designated as the 'liquid metal'.
Thus, if i find a bottle on the shelf that has no solid in it, only liquid and i know that only pure metals are stored in that area of the laboratory, then i will quickly relabel it as mercury.