1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
3 years ago
7

The federal highway administration reports nearly

Engineering
1 answer:
levacccp [35]3 years ago
8 0

Explanation:

The federal highway administration reports nearly 800 work zone fatalities per year.

You might be interested in
Although studs are sometimes spaced 24" O.C. in residential structures, a spacing of_____ O.C. is more commonly used.
Allisa [31]

Answer:

B. 16

Explanation:

hope this helps

 - Leila

4 0
2 years ago
Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
Angelina_Jolie [31]

Answer:

6e66363636633747747363637737373737337374

5 0
3 years ago
What is the composition, in atom percent, of an alloy that contains 44.5 lbmof Ag, 83.7 lbmof Au, and 5.3 lbmof Cu? What is the
Vlad [161]

Answer:

rr

Explanation:

4 0
3 years ago
A 11.5 nC charge is at x = 0cm and a -1.2 nC charge is at x = 3 cm ..At what position or positions on the x-axis is the electric
diamong [38]

Answer:

Explanation:

Given

q_1=11.5\ nC charge is placed at x=0\ cm

another charge of q_2=-1.2\ nC is at x=3\ cm

We know that Electric field due to positive charge is away  from it and Electric field due to negative charge is towards it.

so net electric field is zero somewhere beyond negatively charged particle

Electric Field due to q_2 at some distance r from it

E_2=\frac{kq_2}{r^2}

Now Electric Field due to q_1 is

E_1=\frac{kq_1}{(3+r)^2}

Now E_1+E_2=0

\frac{k\times 11.5}{(r+3)^2}\frac{k\times (-1.2)}{r^2}=0

\frac{3+r}{r}=(\frac{11.5}{1.2})^{0.5}

\frac{3+r}{r}=3.095

thus r=1.43\ cm

Thus Electric field is zero at some distance r=1.43 cm right of q_2

3 0
3 years ago
An aluminium alloy tube has a length of 750 mm at a temperature of 223°C. What will be its length at 23°C if its coefficient of
uranmaximum [27]

Answer:

Final length= 746.175 mm

Explanation:

Given that Length of aluminium at 223 C is 750 mm.As we know that when temperature of material increases or decreases then dimensions of material also increases or decreases respectively with temperature.

Here temperature of aluminium decreases so the final length of aluminium decreases .

As we know that

\Delta L=L\alpha\Delta T

Now by putting the values

\Delta L=750\times \25.5\times 10^{-6}\times 200

ΔL=3.82 mm

So final length =750-3.82 mm

Final length= 746.175 mm

3 0
3 years ago
Other questions:
  • Given the following MATLAB statement: ( 3 + 2 ) / 5 * 4 + 5 ^ 2 In what order will these operations be done?
    9·1 answer
  • Where Does a Solar Engineer Work? <br> (2 sentences or more please)
    14·2 answers
  • Laws that protect businesses involve
    10·1 answer
  • . A constant current of 1 ampere is measured flowing into the positive reference terminal of a pair of leads whose voltage we’ll
    10·1 answer
  • A poundal is the force required to accelerate a mass of 1 lbm at a rate of 1 ft/(s^2). Determine the acceleration of an object o
    10·1 answer
  • Solving Expressions Analytically 1 point Consider the following equation, which describes the speed of sound a in an ideal gas:
    12·1 answer
  • Write Python expressions using s1, s2, and s3 and operators and * that evaluate to: (a) 'ant bat cod'
    14·1 answer
  • When could you use the engineering design process in your own life?
    9·1 answer
  • 40 POINTS IF ANSERED WITHIN 10 MINS
    13·2 answers
  • Conclude from the scenario below which type of documentation Holly should use, and explain why this would be the best choice
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!