Answer:
voltage = -0.01116V
power = -0.0249W
Explanation:
The voltage v(t) across an inductor is given by;
v(t) = L
-----------(i)
Where;
L = inductance of the inductor
i(t) = current through the inductor at a given time
t = time for the flow of current
From the question:
i(t) =
A
L = 10mH = 10 x 10⁻³H
Substitute these values into equation (i) as follows;
v(t) = 
Solve the differential
v(t) = 
v(t) = -0.05 
At t = 8s
v(t) = v(8) = -0.05 
v(t) = v(8) = -0.05 
v(t) = -0.05 x 0.223
v(t) = -0.01116V
(b) To get the power, we use the following relation:
p(t) = i(t) x v(t)
Power at t = 8
p(8) = i(8) x v(8)
i(8) = i(t = 8) = 
i(8) = 
i(8) = 10 x 0.223
i(8) = 2.23
Therefore,
p(8) = 2.23 x -0.01116
p(8) = -0.0249W
Answer:
The heat from the sun melted it
Explanation:
If the street runs east to west, houses on the south (across the street) will project shadows on their sidewalk, while the northern sidewalk will be illuminated. This is for the northern hemisphere, on the southern hemisphere it would be the other way around.
Answer:
See explaination
Explanation:
Kindly check attachment for the step by step solution of the given problem.
Answer:
The value of v2 in each case is:
A) V2=3v for only Vs1
B) V2=2v for only Vs2
C) V2=5v for both Vs1 and Vs2
Explanation:
In the attached graphic we draw the currents in the circuit. If we consider only one of the batteries, we can consider the other shorted.
Also, what the problem asks is the value V2 in each case, where:

If we use superposition, we passivate a battery and consider the circuit affected only by the other battery.
In the first case we can use an equivalent resistance between R2 and R3:

And


In the second case we can use an equivalent resistance between R2 and (R1+R4):

And


If we consider both batteries:

Drafting has been around a long time. We can safely assume that since we’ve had a tool in our hands, we’ve been describing plans and technical representations and doodling ideas. Let’s take a closer aspect at drafting and its advance from an under-the-radar part of the method to a very developed skill set.
<u>Explanation</u>
• 1970s – The beginning computer-aided design systems were included in the industry. Following the design engineers tried the learning curve of using CAD, their performance and productivity went through the roof. Over time, CAD software became affordable and more user-friendly, and its fame grew.
• 1990s – CAD software was expanded further to include 3-D characteristics, and quickly the technical designs of the past enhanced increasingly simulated and accessible to engineer.
• Present – The development of drafting has brought us to the present day, were using 3-D representations is the standard and the aim to generate full virtual prototypes.