Answer:
The mechanical advantage is 3 to 1
Explanation:
A frictionless pulley with three support ropes carries equal tension on each of the ropes thus;
Tension in each pulley rope = T
Total tension in the 3 ropes = 3 × T = 3·T
Direction of the tension forces on each rope = Unidirectional
Total force provided by the 3 ropes = 3·T
Therefore, a force, T, applied at the end of the rope will result in a lifting force of 3·T
Hence, the mechanical advantage = 3·T to T which is presented as follows;

The mechanical advantage = 3 to 1.
Answer:
x = 93.8 m.
Explanation:
During the entire the reaction time interval, the vehicle continues moving at the same speed that it was moving, i.e., 60 mi/hr.
In order to calculate the distance in meters, travelled at that speed, it is advisable first to convert the 60 mi/hr to m/seg, as follows:

Applying the definition of average velocity, we can solve for Δx, as follows:
Δx = 26.8 m/s* 3.5 s = 93.8 m
Answer:
the internet is a need everywhere to do work and games systems is a technology that is just a want.
Explanation:
Answer:
the width of the turning roadway = 15 ft
Explanation:
Given that:
A ramp from an expressway with a design speed(u) = 30 mi/h connects with a local road
Using 0.08 for superelevation(e)
The minimum radius of the curve on the road can be determined by using the expression:

where;
R= radius
= coefficient of friction
From the tables of coefficient of friction for a design speed at 30 mi/h ;
= 0.20
So;



R = 214.29 ft
R ≅ 215 ft
However; given that :
The turning roadway has stabilized shoulders on both sides and will provide for a onelane, one-way operation with no provision for passing a stalled vehicle.
From the tables of "Design widths of pavement for turning roads"
For a One-way operation with no provision for passing a stalled vehicle; this criteria falls under Case 1 operation
Similarly; we are told that the design vehicle is a single-unit truck; so therefore , it falls under traffic condition B.
As such in Case 1 operation that falls under traffic condition B in accordance with the Design widths of pavement for turning roads;
If the radius = 215 ft; the value for the width of the turning roadway for this conditions = 15ft
Hence; the width of the turning roadway = 15 ft