Answer:
0.055g/mL
Explanation:
Data obtained from the question include:
Molar Mass of the gass sample = 71g/mol
Volume of the gas sample = 1300 mL
Density =?
The density of a substance is simply mass per unit volume. It is represented mathematically as:
Density = Mass /volume.
With the above equation, we can easily obtain the density of sample of gas as illustrated below:
Density = 71g / 1300 mL
Density = 0.055g/mL
Therefore, the density of the gas sample is 0.055g/mL
Answer:
acid
Explanation:
Methyl acetate, also known as MeOAc, acetic acid methyl ester or methyl ethanoate, is a carboxylate ester with the formula CH3COOCH3. It is a flammable liquid with a characteristically pleasant smell reminiscent of some glues and nail polish removers.
Answer:
a) 0
Explanation:
Each of the small dots surrounding the C1 represents one electron. These are where electrivity comes from. Since there is the same number of electrons in both atoms, the difference is 0 (because 6 electrons-6electrons= 0).
Each element absorbs light at specific wavelengths unique to that atom. When astronomers look at an object's spectrum, they can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy.
hope this helps you! :-)
To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g