Answer:
The boiling point of sample X and sample Y are exactly the same.
Explanation:
The difference between sample X and sample Y is that they occupy different volumes. However, they both contain pure water. Remember that pure water has uniform composition irrespective of its volume.
Volume does not affect the boiling point as long as the volume is small enough not to give rise to significant pressure changes in the liquid.
The boiling point of a liquid is the temperature at which the pressure exerted by the surroundings upon a liquid is equaled by the pressure exerted by the vapour of the liquid; under this condition, addition of heat results in the transformation of the liquid into its vapour without raising the temperature.
It can be clearly seen from the above that the volume of a solution of pure water does not affect its boiling point hence sample X and sample Y will have the same boiling point.
I am not to sure because I have not studied this
The difference in an area with high concentration and an area with low concentration is called the concentration gradient.
<h3>
What is Concentration Gradient ?</h3>
A concentration gradient occurs when the concentration of particles is higher in one area than another.
In passive transport, particles will diffuse down a concentration gradient, from areas of higher concentration to areas of lower concentration, until they are evenly spaced.
This difference in an area with high concentration and an area with low concentration is called the concentration gradient.
Learn more about diffusion here ;
brainly.com/question/24746577
#SPJ1
Answer:
The Coriolis effect is caused by the rotation of the earth around its own axis.
Explanation:
The Coriolis effect arises from the fact that different latitudes of the earth's surface rotate at different speeds. The path of wind on earth is deflected by the Coriolis effect. As things move over the earth, they meet different speed areas, which causes the Coriolis Effect to divert their route.
Thus, The Coriolis effect is caused by the rotation of the earth around its own axis.